Advertisement

Applied Physics B

, Volume 121, Issue 3, pp 235–248 | Cite as

Temperature and velocity determination of shock-heated flows with non-resonant heterodyne laser-induced thermal acoustics

  • F. J. FörsterEmail author
  • S. Baab
  • G. Lamanna
  • B. Weigand
Article

Abstract

Non-resonant laser-induced thermal acoustics (LITA), a four-wave mixing technique, was applied to post-shock flows within a shock tube. Simultaneous single-shot determination of temperature, speed of sound and flow velocity behind incident and reflected shock waves at different pressure and temperature levels are presented. Measurements were performed non-intrusively and without any seeding. The paper describes the technique and outlines its advantages compared to more established laser-based methods with respect to the challenges of shock tube experiments. The experiments include argon and nitrogen as test gas at temperatures of up to 1000 K and pressures of up to 43 bar. The experimental data are compared to calculated values based on inviscid one-dimensional shock wave theory. The single-shot uncertainty of the technique is investigated for worst-case test conditions resulting in relative standard deviations of 1, 1.7 and 3.4 % for Mach number, speed of sound and temperature, respectively. For all further experimental conditions, calculated values stay well within the 95 % confidence intervals of the LITA measurement.

Keywords

Mach Number Shock Tube Incident Shock Wave Signal Beam Fringe Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was performed within the framework of the Transregio 40 “Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems” and the GRK 1095/2 “Aero-Thermodynamic Design of a SCRamjet Propulsion System for Future Space Transportation Systems.” The authors would like to thank the German Research Foundation (DFG) for the financial support.

References

  1. 1.
    K. Itoh, S. Ueda, H. Tanno, T. Komuro, K. Sato, Shock Waves 12, 93 (2002). doi: 10.1007/s00193-002-0147-0 CrossRefADSGoogle Scholar
  2. 2.
    R.K. Hanson, D.F. Davidson, Prog. Energy Combust. 44, 103 (2014). doi: 10.1016/j.pecs.2014.05.001 CrossRefGoogle Scholar
  3. 3.
    S. Baab, G. Lamanna, B. Weigand, in 26th ILASS Americas in Portland, OR, USA, 2014 (2014)Google Scholar
  4. 4.
    R. Hruschka, S. O’Byrne, H. Kleine, Exp. Fluids 51, 407 (2011). doi: 10.1007/s00348-011-1039-9 CrossRefGoogle Scholar
  5. 5.
    K.J. Irimpan, N. Mannil, H. Arya, V. Menezes, Measurement 61, 291 (2014). doi: 10.1016/j.measurement.2014.10.056 CrossRefGoogle Scholar
  6. 6.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004). doi: 10.1007/s00340-003-1380-7 CrossRefADSGoogle Scholar
  7. 7.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008). doi: 10.1007/s00340-007-2925-y CrossRefADSGoogle Scholar
  8. 8.
    B.K. McMillin, M.P. Lee, R.K. Hanson, AIAA J. 30, 436 (1992)CrossRefADSGoogle Scholar
  9. 9.
    J. Yoo, D. Mitchell, D.F. Davidson, R.K. Hanson, Exp. Fluids 49, 751 (2010). doi: 10.1007/s00348-010-0876-2 CrossRefGoogle Scholar
  10. 10.
    S. Zabeti, A. Drakon, S. Faust, T. Dreier, O. Welz, M. Fikri, C. Schulz, Appl. Phys. B 118, 295 (2015). doi: 10.1007/s00340-014-5986-8 CrossRefADSGoogle Scholar
  11. 11.
    D.R.N. Pulford, D.S. Newman, A.F.P. Houwing, R.J. Sandeman, Shock Waves 4, 119 (1994)CrossRefADSGoogle Scholar
  12. 12.
    W.R. Lempert, I.V. Adamovich, J. Phys. D: Appl. Phys. 47, 26 (2014). doi: 10.1088/0022-3727/47/43/433001
  13. 13.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161 (2009). doi: 10.1007/s00340-009-3446-7 CrossRefADSGoogle Scholar
  14. 14.
    T. Seeger, A. Leipertz, Appl. Opt. 35(15), 2665 (1996). doi: 10.1364/AO.35.002665 CrossRefADSGoogle Scholar
  15. 15.
    A. Dreizler, T. Dreier, J. Wolfrum, Chem. Phys. Lett. 233, 525 (1995)CrossRefADSGoogle Scholar
  16. 16.
    P.H. Paul, R.L. Farrow, J. Opt. Soc. Am. B 12, 384 (1995)CrossRefADSGoogle Scholar
  17. 17.
    E.B. Cummings, I.A. Leyva, H.G. Hornung, Appl. Opt. 34, 3290 (1995)CrossRefADSGoogle Scholar
  18. 18.
    A. Stampanoni-Panariello, D.N. Kozlov, P.P. Radi, B. Hemmerling, Appl. Phys. B 81, 101 (2005). doi: 10.1007/s00340-005-1825-z CrossRefADSGoogle Scholar
  19. 19.
    E.B. Cummings, Opt. Lett. 19, 1361 (1994)CrossRefADSGoogle Scholar
  20. 20.
    W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, Appl. Phys. B 62, 103 (1996)CrossRefADSGoogle Scholar
  21. 21.
    R.C. Hart, R.J. Balla, G.C. Herring, Appl. Opt. 38, 577–584 (1999)Google Scholar
  22. 22.
    R. Stevens, P. Ewart, Appl. Phys. B 78, 111 (2004). doi: 10.1007/s00340-003-1282-8 CrossRefADSGoogle Scholar
  23. 23.
    D.N. Kozlov, Appl. Phys. B 80, 377 (2005). doi: 10.1007/s00340-004-1720-2 CrossRefADSGoogle Scholar
  24. 24.
    E.B. Cummings, H.G. Hornung, M.S. Brown, P.A. DeBarber, Opt. Lett. 20, 1577 (1995)CrossRefADSGoogle Scholar
  25. 25.
    S. Schlamp, H.G. Hornung, T.H. Sobota, E.B. Cummings, Appl. Opt. 39(30), 5477 (2000). doi: 10.1364/AO.39.005477 CrossRefADSGoogle Scholar
  26. 26.
    Y. Li, W.L. Romperts, M.S. Brown, AIAA J. 40(6), 1071 (2002). doi: 10.2514/2.1790 CrossRefADSGoogle Scholar
  27. 27.
    Y. Li, W.L. Roberts, M.S. Brown, J.R. Gord, Exp. Fluids 39, 687 (2005). doi: 10.1007/s00348-005-1012-6 CrossRefGoogle Scholar
  28. 28.
    S. Schlamp, T.H. Sobota, Exp. Fluids 32, 683 (2002). doi: 10.1007/s00348-002-0419-6 CrossRefGoogle Scholar
  29. 29.
    J. Kiefer, D.N. Kozlov, T. Seeger, A. Leipertz, J. Raman Spectrosc. 39, 711 (2008). doi: 10.1002/jrs.1965 CrossRefADSGoogle Scholar
  30. 30.
    B. Roshani, A. Flügel, I. Schmitz, D.N. Kozlov, T. Seeger, L. Zigan, J. Kiefer, A. Leipertz, J. Raman Spectrosc. 44, 1356 (2013). doi: 10.1002/jrs.4315 CrossRefADSGoogle Scholar
  31. 31.
    R.C. Hart, G.C. Herring, R.J. Balla, Opt. Lett. 32, 1689 (2007)CrossRefADSGoogle Scholar
  32. 32.
    H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G.M. Lloyd, P. Ewart, Appl. Phys. B 67, 667 (1998)CrossRefADSGoogle Scholar
  33. 33.
    S.Schlamp, E. Allen-Bradley, in 38th Aerospace Sciences Meeting & Exhibit (2000)Google Scholar
  34. 34.
    M. Neracher, W. Hubschmid, Appl. Phys. B 79, 783 (2004). doi: 10.1007/s00340-0014-1632-1 CrossRefADSGoogle Scholar
  35. 35.
    C. Frazier, M. Lamnaouer, E. Divo, A. Kassab, E. Petersen, Shock Waves 21, 1 (2011). doi: 10.1007/s00193-010-0282-y CrossRefADSGoogle Scholar
  36. 36.
    J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, Opt. Lett. 21, 1532 (1996)CrossRefADSGoogle Scholar
  37. 37.
    R. Stevens, P. Ewart, Opt. Lett. 31, 1055 (2006). doi: 10.1364/OL.31.001055
  38. 38.
    H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 89, 407 (2007). doi: 10.1007/s00340-007-2781-9 CrossRefADSGoogle Scholar
  39. 39.
    M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M.C. Amann, R. Shau, J. Rosskopf, Meas. Sci. Technol. 14, 101 (2003). doi: 10.1088/0957-0233/14/1/315 CrossRefADSGoogle Scholar
  40. 40.
    P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38(4), 672 (2000). doi: 10.2514/2.1009 CrossRefADSGoogle Scholar
  41. 41.
    B. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43(20), 5064 (2004). doi: 10.1364/AO.43.005064 CrossRefADSGoogle Scholar
  42. 42.
    W.D. Kulatilaka, J.R. Gord, S. Roy, Appl. Phys. B 116, 7 (2014). doi: 10.1007/s00340-014-5845-7 CrossRefADSGoogle Scholar
  43. 43.
    P.J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, A. Dreizler, P. Combust, Inst 34, 3565 (2013). doi: 10.1016/j.proci.2012.06.025 Google Scholar
  44. 44.
    J.D. Miller, S. Roy, M.N. Slipchenko, J.R. Gord, T.R. Meyer, Opt. Express 19(16), 15627 (2011). doi: 10.1364/OE.19.015627 CrossRefADSGoogle Scholar
  45. 45.
    S.P. Kearney, D.J. Scoglietti, C.J. Kliewer, Opt. Express 21(10), 12327 (2013). doi: 10.1364/OE.21.012327 CrossRefADSGoogle Scholar
  46. 46.
    S. O’Byrne, P.M. Danehy, S.A. Tedder, A.D. Cutler, AIAA J. 45, 922 (2007). doi: 10.2514/1.26768 CrossRefADSGoogle Scholar
  47. 47.
    B. Hiller, R.K. Hanson, Appl. Opt. 27(1), 33 (1988). doi: 10.1364/AO.27.000033 CrossRefADSGoogle Scholar
  48. 48.
    A.D. Cutler, G. Magnotti, J. Raman Spectrosc. 42, 1949 (2011). doi: 10.1002/jrs.2948 CrossRefADSGoogle Scholar
  49. 49.
    B. Hemmerling, M. Neracher, D. Kozlov, W. Kwan, R. Stark, D. Klimenko, W. Clauss, M. Oschwald, J Raman Spectrosc 33, 912 (2002). doi: 10.1002/jrs.946 CrossRefADSGoogle Scholar
  50. 50.
    B. Williams, M. Edwards, R. Stone, J. Williams, P. Ewart, Combust. Flame 161, 270 (2014). doi: 10.1016/j.combustflame.2013.07.018 CrossRefGoogle Scholar
  51. 51.
    F.J. Förster, B. Weigand, in 19th AIAA Hypersonics in Atlanta , vol. 2014 (GE, USA, 2014)Google Scholar
  52. 52.
    G. C.Herring, F. Meyers, R.C. Hart, Meas. Sci. Technol. 20 (2009). doi: 10.1088/0957-0233/20/4/045304
  53. 53.
    T. Mizukaki, T. Matsuzawa, Shock Waves 19, 361 (2009). doi: 10.1007/s00193-009-028-6 CrossRefADSGoogle Scholar
  54. 54.
    T. Sander, P. Altenhoefer, C. Mundt, AIAA J. (2015). doi: 10.2514/1.T4556
  55. 55.
    S. Schlamp, T. Rösgen, D.N. Kozlov, C. Rakut, P. Kasal, J. von Wolfersdorf, J. Propul. Power 21, 1008 (2005)CrossRefGoogle Scholar
  56. 56.
    I. Stotz, G. Lamanna, H. Hettrich, B. Weigand, J. Steelant, Rev. Sci. Instrum. 79 (2008). doi: 10.1063/1.3058609
  57. 57.
    H. Oertel, Stossrohre (Springer, New York, 1966)Google Scholar
  58. 58.
    S. Rozouvan, T. Dreier, Opt. Lett. 24(22), 1596 (1999). doi: 10.1364/OL.24.001596 CrossRefADSGoogle Scholar
  59. 59.
    Thorlabs, APD110x Series Avalanche Photodetectors (2011)Google Scholar
  60. 60.
    R. Fowler, E. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1960)Google Scholar
  61. 61.
    R.J. Balla, C.A. Miller, Nasa TechReport 2008-215327 (2008)Google Scholar
  62. 62.
    J. Gurland, R.C. Tripathi, Am. Stat. 25(4), 30 (1971)Google Scholar
  63. 63.
    E. Cummings, Laser-induced thermal acoustics. Ph.D. thesis, California Institute of Technology (1995)Google Scholar
  64. 64.
    P. Danehy, Population- and thermal-grating contributions to degenerate four-wave mixing. Ph.D. thesis, Dept. of Mech.Eng., Stanford Univ. (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • F. J. Förster
    • 1
    Email author
  • S. Baab
    • 1
  • G. Lamanna
    • 1
  • B. Weigand
    • 1
  1. 1.Institute of Aerospace Thermodynamics (ITLR)University of StuttgartStuttgartGermany

Personalised recommendations