Applied Physics B

, Volume 121, Issue 1, pp 107–116 | Cite as

Optical investigation of nanophotonic lithium niobate-based optical waveguide

  • Makram A. Fakhri
  • Y. Al-DouriEmail author
  • U. Hashim
  • Evan T. Salim
  • Deo Prakash
  • K. D. Verma


Lithium niobate (LiNbO3) nanophotonics are prepared on quartz substrate by sol–gel method. They have been deposited with different molarity concentrations and annealed at 500 °C. These samples are characterized and analyzed by scanning electron microscope, atomic force microscopy, X-ray diffraction and ultraviolet–visible. The measured results show an importance of increasing molarity that indicates the structure starts to crystallize to become more regular. The estimated lattice constants, energy gaps and refractive index give good accordance with experimental results. Also, the calculated refractive index and optical dielectric constant are in agreement with experimental data.


LiNbO3 Nb2O5 Optical Waveguide Lithium Niobate Optical Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Y.A. would like to thank University Malaysia Perlis for Grant Nos. 9007-00111 and 9007-00185 and TWAS-Italy for the full support of his visit to JUST-Jordan under a TWAS-UNESCO Associateship. K.D.V. would like to acknowledge U.G.C., New Delhi, India, for providing financial assistance in the form of Major Research Project [Code: 42-856/2013(SR)].


  1. 1.
    D. Janner, D. Tulli, M. Jofre, D. Yudistira, S. Balsamo, M. Belmonte, V. Pruneri, Domain inverted acousto- and electrooptic devices and their application to optical communication, sensing, laser sources, and quantum key distribution. IEEE J. Sel. Top. Quantum Electron. 19, 34006–34016 (2013)CrossRefGoogle Scholar
  2. 2.
    E. Marenna, C. Aruta, E. Fanelli, M. Barra, P. Pernice, A. Aronne, Sol–gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrix. J. Solid State Chem. 182, 1229–1234 (2009)CrossRefADSGoogle Scholar
  3. 3.
    P. Kumar, S.M. Baru, S. Perero, R.M.L. Sai, I. Bhamik, S. Ganesamoorthy, A.K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray direction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal. J. Phys. 75, 1035–1040 (2010)Google Scholar
  4. 4.
    A.Z.S. Es, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, C.S. Riccardi, M. Cantoni, J.A. Varela, Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films. J. Eur. Ceram. Soc. 24, 1607–1613 (2004)CrossRefGoogle Scholar
  5. 5.
    A.Z. Simoes, M.A. Zaghete, B.D. Stojanovic, C.S. Riccardi, A. Ries, A.H. Gonzalez, J.A. Varela, LiNbO3 thin films prepared through polymeric precursor method. Mater. Lett. 57, 2333–2339 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Aufray, S. Menue, Y. Fort, J. Eschbach, D. Rouxel, B. Vincent, New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis. J. Nanosci. Nanotechnol. 9, 4780–4785 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Mamoun, A.E. Merad, L. Guilbert, Energy band gap and optical properties of lithium niobate from ab initio calculations. Comput. Mater. Sci. 79, 125–131 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Thierfelder, S. Sanna, A. Schindlmayr, W.G. Schmidt, Do we know the band gap of lithium niobate? Phys. Status Solidi (C) 7, 362–365 (2010)CrossRefADSGoogle Scholar
  9. 9.
    A. Tumuluri, K.L. Naidu, K.C. James Raju, Band gap determination using Tauc’s plot for LiNbO3 thin films. Int. J. ChemTech. Res. 6, 3353–3356 (2014)Google Scholar
  10. 10.
    K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, H. Modrow, Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage. Appl. Phys. B 82, 419–422 (2006)CrossRefADSGoogle Scholar
  11. 11.
    L.H. Wang, D.R. Yuan, X.L. Duan, X.Q. Wang, F.P. Yu, Synthesis and characterization of fine lithium niobate powders by sol–gel method. Cryst. Res. Technol. 42, 321–324 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Liu, D. Xue, K. Li, Soft-chemistry synthesis of LiNbO3 crystallites. J. Alloy. Compd. 449, 28–31 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Wang, Y. Liang, S. Tian, W. Man, J. Jia, Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application. J. Cryst. Growth 375, 73–77 (2013)CrossRefADSGoogle Scholar
  14. 14.
    J.W. Son, S.S. Orlov, B. Phillips, L. Hesselink, Pulsed laser deposition of single phase LiNbO3 thin film waveguides. J. Electroceram. 17, 591–595 (2006)CrossRefGoogle Scholar
  15. 15.
    D.A. Kiselev, R.N. Zhukov, A.S. Bykov, M.D. Malinkovich, Y.N. Parkhomenko, in Growth and Investigation of LiNbO3 Thin Films at Nanoscale by Scanning Force Microscopy, PIERS Proceedings, Moscow, Russia (2012)Google Scholar
  16. 16.
    N. Ozer, C.M. Lampert, Electrochemical Lithium insertion in sol–gel deposited Li/nbO3 films. Sol. Energy Mater. Sol. Cells 39, 367–375 (1995)CrossRefGoogle Scholar
  17. 17.
    B. Knabe, D.S. Tze, T. Jungk, M. Svete, W. Assenmacher, W. Mader, K. Busem, Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method. Phys. Status Solidi (A) 208, 857–862 (2011)CrossRefADSGoogle Scholar
  18. 18.
    B. Knabe, D. Schutze, T. Jungk, M. Svete, W. Assenmacher, W. Mader, K. Buse, Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method. Phys. Status Solidi (A) 208, 857–862 (2011)CrossRefADSGoogle Scholar
  19. 19.
    X. Wang, Z. Ye, G. Wu, L. Cao, B. Zhao, Growth of textured LiNbO3 thin film on Si (111) substrate by pulsed laser deposition. Mater. Lett. 59, 2994–2997 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, X. Zhang, Biomolecular binding dynamics in sensors based on metallic photonic crystals. Opt. Commun. 320, 56–59 (2014)CrossRefADSGoogle Scholar
  21. 21.
    H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F.I. Baida, M.-P. Bernal, 6-Micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity. Opt. Express 20, 20884–20893 (2012)CrossRefADSGoogle Scholar
  22. 22.
    H. Chen, T. Lv, A. Zheng, Y. Han, Discrete diffraction based on electro-optic effect in periodically poled lithium niobate. Opt. Commun. 294, 202–207 (2013)CrossRefADSGoogle Scholar
  23. 23.
    P. Ganguly, Semi-analytical analysis of lithium niobate photonic wires. Opt. Commun. 285, 4347–4352 (2012)CrossRefADSGoogle Scholar
  24. 24.
    A.A. Mohamed, M.A. Metawe’e, A.N.Z. Rashed, A.I.M. Bendary, Ultra high speed semiconductor electrooptic modulator devices for gigahertz operation in optical communication systems. Int. J. Opt. Appl. 1, 1–7 (2011)CrossRefGoogle Scholar
  25. 25.
    K.S. Kaur, A.Z. Subramanian, Y.J. Ying, D.P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C.L. Sones, S. Mailis, R.W. Eason, Waveguide mode filters fabricated using laserinduced forward transfer. Opt. Express 19, 9814–9819 (2011)CrossRefADSGoogle Scholar
  26. 26.
    L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, P. Ferraro, Light induced DEP for immobilizing and orienting Escherichia coli bacteria. Opt. Lasers Eng. (2015). doi: 10.1016/j.optlaseng.2015.03.025 Google Scholar
  27. 27.
    D. Gong, H. Tian, L. Tan, Z. Zhou, Electric-field-controlled two-dimensional Raman–Nath diffraction from paraelectric potassium lithium tantalate niobate. Opt. Lasers Eng. 49, 594–598 (2011)CrossRefGoogle Scholar
  28. 28.
    N. Argiolas, M. Bazzan, E. Cattaruzza, A. Gasparini, P. Mazzoldi, C. Sada, A.D. Capobianco, E. Autizi, F.M. Pigozzo, A. Locatelli, L.C. Guarneri, Periodically poled lithium niobate structures grown by the off-center Czochralski technique for backward and forward second harmonic generation. Opt. Lasers Eng. 45, 373–379 (2007)CrossRefGoogle Scholar
  29. 29.
    Y. Al-Douri, Q. Khasawneh, S. Kiwan, U. Hashim, S.B. Abd Hamid, A.H. Reshak, A. Bouhemadou, M. Ameri, R. Khenata, Structural and optical insights to enhance solar cell performance of CdS nanostructures. Energy Convers. Manag. 82, 238–243 (2014)CrossRefGoogle Scholar
  30. 30.
    I.-K. Jeong, Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a Rietveld analysis. J. Korean Phys. Soc. 59, 2756–2759 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Al-Douri, M. Ameri, A. Bouhemadou, Optical investigations of ZnxCd1−xS nanostructures. Optik 125, 6958–6961 (2014)CrossRefADSGoogle Scholar
  32. 32.
    N.S.L.S. Vasconcelos, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo, L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin, M.I. Bernardi, J.A. Varela, Epitaxial growth of LiNbO thin films in a microwave oven. Thin Solid Films 436, 213–219 (2003)CrossRefADSGoogle Scholar
  33. 33.
    T. Ghosh, B. Samana, P.C. Jana, P. Ganguly, Determination of refractive index profile and mode index from the measured mode profile of single-mode LiNbO3-diffused waveguides. Fiber Integr. Opt. 31, 1–10 (2012)CrossRefGoogle Scholar
  34. 34.
    D.L. Zhang, Q. Zhang, C.X. Qiu, W.H. Wong, E.Y.B. Pun, Zr4 + diffusion-doping effect on refractive index of LiNbO3: a comparison with bulk-doping case. Opt. Mater. Express 4, 2215–2220 (2014)CrossRefGoogle Scholar
  35. 35.
    N.M. Balzaretti, J.A.H. da Jornad, Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride. Solid State Commun. 99, 943–948 (1996)CrossRefADSGoogle Scholar
  36. 36.
    Y. Al-Douri, H. Khachai, R. Khenata, Chalcogenides-based quantum dots: Optical investigation using first-principles calculations. Mater Sci Semicond Process 39, 276–282 (2015)CrossRefGoogle Scholar
  37. 37.
    Y. Al-Douri, U. Hashim, R. Khenata, A.H. Reshak, M. Ameri, A. Bouhemadou, A. Rahim Ruslinda, M.K. Md Arshad, Ab initio method of optical investigations of CdS1-xTex alloys under quantum dots diameter effect. Sol Energy 115, 33–39 (2015)CrossRefADSGoogle Scholar
  38. 38.
    Y. Al-Douri, Electronic and optical properties of ZnxCd1–xSe. Mater. Chem. Phys. 82, 49–54 (2003)CrossRefGoogle Scholar
  39. 39.
    Y. Al-Douri, Y.P. Feng, A.C.H. Huan, Optical investigations using ultra-soft pseudopotential of Si0.5 Ge0.5. Solid State Commun. 148, 521–524 (2008)CrossRefADSGoogle Scholar
  40. 40.
    Y. Al-Douri, A.H. Reshak, H. Baaziz, Z. Charifi, R. Khenata, S. Ahmad, U. Hashim, An ab initio study of the electronic structure and optical properties of CdS1-xTex alloys. Sol Energy 84, 1979–1984 (2010)CrossRefADSGoogle Scholar
  41. 41.
    N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi (B) 93, k155–k160 (1979)CrossRefADSGoogle Scholar
  42. 42.
    P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77, 5476–5477 (1995)CrossRefADSGoogle Scholar
  43. 43.
    D.K. Ghosh, L.K. Samanta, G.C. Bhar, A simple model for evaluation of refractive indices of some binary and ternary mixed crystals. Infrared Phys. 24, 43–47 (1984)CrossRefADSGoogle Scholar
  44. 44.
    D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)zbMATHCrossRefADSGoogle Scholar
  45. 45.
    J.A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891–905 (1969)CrossRefADSGoogle Scholar
  46. 46.
    G.A. Samara, Temperature and pressure dependences of the dielectric constants of semiconductors. Phys. Rev. B 27, 3494–3505 (1983)CrossRefADSGoogle Scholar
  47. 47.
    A.Z. Simões, A.H.M. González, A.A. Cavalheiro, M.A. Zaghete, B.D. Stojanovic, J.A. Varela, Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors. Ceram. Int. 28, 265–270 (2002)CrossRefGoogle Scholar
  48. 48.
    D.E. Zelmon, D.L. Small, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Makram A. Fakhri
    • 1
    • 2
  • Y. Al-Douri
    • 1
    • 3
    Email author
  • U. Hashim
    • 1
  • Evan T. Salim
    • 5
  • Deo Prakash
    • 4
  • K. D. Verma
    • 6
  1. 1.Institute of Nano Electronic EngineeringUniversity Malaysia PerlisKangarMalaysia
  2. 2.Laser and Optoelectronic DepartmentUniversity of TechnologyBaghdadIraq
  3. 3.Physics Department, Faculty of ScienceUniversity of Sidi-Bel-AbbesSidi-Bel-AbbèsAlgeria
  4. 4.School of Computer Science and Engineering, Faculty of EngineeringSMVD UniversityKakryal, KatraIndia
  5. 5.Laser Science BranchUniversity of TechnologyBaghdadIraq
  6. 6.Material Science Research Laboratory, Department of PhysicsS. V. CollegeAligarhIndia

Personalised recommendations