Advertisement

Applied Physics B

, Volume 120, Issue 4, pp 667–673 | Cite as

Sensitive, time-resolved, broadband spectroscopy of single transient processes

  • Peter Fjodorow
  • Ivan Baev
  • Ortwin Hellmig
  • Klaus Sengstock
  • Valery M. Baev
Article

Abstract

Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

Keywords

Laser Emission Spectral Noise Single Transient Event Pulse Detonation Engine Dope Fiber Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank P.E. Toschek for helpful discussions, S. Cheskis for the development of software enabling fast data acquisition, and W. Wurth for technical support. This work was supported by the Deutsche Forschungsgemeinschaft within GrK 1355.

References

  1. 1.
    C. Schulz, V. Sick, Tracer-LIF diagnostics: quantitative measurements of fuel concentration, temperature and air/fuel ratio in practical combustion situations. Prog. Energy Combust. Sci. 31, 75–121 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Aldén, J. Bood, Z. Li, M. Richter, Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc. Combust. Inst. 33, 69–97 (2011)CrossRefGoogle Scholar
  3. 3.
    R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116, 855–865 (2014)CrossRefADSGoogle Scholar
  4. 4.
    J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)CrossRefADSGoogle Scholar
  5. 5.
    C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in high-pressure and -temperature gases. Appl. Phys. B 116, 705–716 (2014)CrossRefADSGoogle Scholar
  6. 6.
    O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 21, 19951–19965 (2013)CrossRefADSGoogle Scholar
  7. 7.
    S.H. Dürrstein, M. Aghsaee, L. Jerig, M. Fikri, C. Schulz, A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems. Rev. Sci. Instr. 82, 084103 (2011)CrossRefADSGoogle Scholar
  8. 8.
    V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 171–202 (1999)CrossRefADSGoogle Scholar
  9. 9.
    B. Löhden, S. Kuznetsova, K. Sengstock, V.M. Baev, A. Goldman, S. Cheskis, B. Pálsdóttir, Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B 102, 331–344 (2011)CrossRefADSGoogle Scholar
  10. 10.
    D.C. Miller, J.J. O’Brien, G.H. Atkinson, In situ detection of BH2 and atomic boron by intracavity laser spectroscopy in the plasma dissociation of gaseous B2H6. J. Appl. Phys. 65, 2645–2651 (1989)CrossRefADSGoogle Scholar
  11. 11.
    S.G. Cheskis, O.M. Sarkisov, Flash photolysis of ammonia in the presence of oxygen. Chem. Phys. Lett. 62, 72–76 (1979)CrossRefADSGoogle Scholar
  12. 12.
    F. Stoeckel, M.D. Schuh, N. Goldstein, G.H. Atkinson, Time resolved intracavity laser spectroscopy: 266 nm photodissociation of acetaldehyde vapor to form HCO. Chem. Phys. 95, 135–144 (1985)CrossRefADSGoogle Scholar
  13. 13.
    P. Sheehy, J.I. Steinfeld, Discharge-flow kinetics measurements using intracavity laser absorption spectroscopy. J. Phys. Chem. B 109, 8358–8362 (2005)CrossRefGoogle Scholar
  14. 14.
    B. Ståhlberg, V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, Laser intracavity absorption spectroscopy of He (a 3Σu+). J. Chem. Soc. Faraday Trans. 2(81), 207–216 (1985)CrossRefGoogle Scholar
  15. 15.
    V.M. Baev, H. Schröder, P.E. Toschek, LiF:F2+-centre laser for intracavity spectroscopy. Opt. Commun. 36, 57–62 (1981)CrossRefADSGoogle Scholar
  16. 16.
    A. Fomin, T. Zavlev, I. Rahinov, S. Cheskis, A fiber laser intracavity absorption spectroscopy (FLICAS) sensor for simultaneous measurements of CO and CO2 concentrations and temperature. Sens. Actuators B 210, 431–438 (2015)CrossRefGoogle Scholar
  17. 17.
    I. Rahinov, A. Goldman, S. Cheskis, Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames. Appl. Phys. B 81, 143–149 (2005)CrossRefADSGoogle Scholar
  18. 18.
    A. Goldman, I. Rahinov, S. Cheskis, B. Löhden, S. Wexler, K. Sengstock, V.M. Baev, Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames. Chem. Phys. Lett. 423, 147–151 (2006)CrossRefADSGoogle Scholar
  19. 19.
    A. Goldman, S. Cheskis, Intracavity laser absorption spectroscopy of sooting acetylene/air flames. Appl. Phys. B 92, 281–286 (2008)CrossRefADSGoogle Scholar
  20. 20.
    V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, Quantum fluctuations of a multi-mode laser oscillator. Opt. Commun. 38, 309–313 (1981)CrossRefADSGoogle Scholar
  21. 21.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)CrossRefADSGoogle Scholar
  22. 22.
    J. Hünkemeier, R. Böhm, V.M. Baev, P.E. Toschek, Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption. Opt. Commun. 176, 417–428 (2000)CrossRefADSGoogle Scholar
  23. 23.
    A.R. Striganov, N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, New York, 1968)CrossRefGoogle Scholar
  24. 24.
    V. Hoffmann, P.E. Toschek, New laser emission from the ionized xenon. IEEE J. Quantum Electron. 6, 757 (1970)CrossRefADSGoogle Scholar
  25. 25.
    S.A. Lawton, J.B. Richards, L.A. Newman, L. Specht, T.A. DeTemple, The high-pressure infrared xenon laser. J. Appl. Phys. 50, 3888–3898 (1979)CrossRefADSGoogle Scholar
  26. 26.
    M.J. Weber, Handbook of Laser Wavelengths (CRC Press, Boca Raton, 1999)Google Scholar
  27. 27.
    Y.H. Meyer, M.N. Nenchev, On intracavity absorption and self frequency locking in pulsed dye lasers. Opt. Commun. 41, 292–294 (1982)CrossRefADSGoogle Scholar
  28. 28.
    V.M. Baev, J. Eschner, A. Weiler, Intracavity spectroscopy with modulated multimode lasers. Appl. Phys. B 49, 315–322 (1989)CrossRefADSGoogle Scholar
  29. 29.
    V.L. Kalashnikov, E. Sorokin, Soliton absorption spectroscopy. Phys. Rev. A 81, 033840 (2010)CrossRefADSGoogle Scholar
  30. 30.
    W. Demtröder, Laser Spectroscopy: Experimental Techniques, vol. 2 (Springer, Berlin, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter Fjodorow
    • 1
  • Ivan Baev
    • 2
  • Ortwin Hellmig
    • 1
  • Klaus Sengstock
    • 1
  • Valery M. Baev
    • 1
  1. 1.Institut für LaserphysikUniversität HamburgHamburgGermany
  2. 2.Institut für ExperimentalphysikUniversität HamburgHamburgGermany

Personalised recommendations