Advertisement

Applied Physics B

, Volume 120, Issue 2, pp 279–284 | Cite as

Doppler-free intermodulated fluorescence spectroscopy of 4He 23P–31,3D transitions at 588 nm with a 1-W compact laser system

Article

Abstract

We have demonstrated Doppler-free intermodulated fluorescence spectroscopy of helium 23P–31,3D transitions in an rf-discharged sealed-off cell using a compact laser system at 588 nm. An external cavity diode laser at 1176 nm was constructed to seed a Raman fiber amplifier. Laser power of more than 1 W at 588 nm was produced by frequency doubling of the fiber amplifier output using a MgO:PPLN crystal. A doubling efficiency of 23 % was achieved. The power-dependent spectra of the 23P–33D transitions were investigated. Furthermore, the Doppler-free spectrum of the spin-forbidden 23P–31D transitions was observed for the first time. Our results are crucial toward precision test of QED atomic calculations, especially for improving the determination of the helium 31D–33D separation.

Keywords

Stimulate Brillouin Scattering External Cavity Diode Laser Intercombination Transition Raman Fiber Amplifier Asymmetric Lineshape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project is supported by the Ministry of Science and Technology and the Ministry of Education of Taiwan. L.-B.W. receives support from Kenda Foundation as a Golden-Jade fellow.

References

  1. 1.
    R. van Rooij, J.S. Borbely, J. Simonet, M.D. Hoogerland, K.S.E. Eikema, R.A. Rozendaal, W. Vassen, Science 333, 196 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    R.P.M.J.W. Notermans, W. Vassen, Phys. Rev. Lett. 112, 253002 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    P.-L. Luo, J.-L. Peng, J.-T. Shy, L.-B. Wang, Phys. Rev. Lett. 111, 013002 (2013); 111, 79901(E) (2013)Google Scholar
  4. 4.
    C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, F. Biraben, Phys. Rev. Lett. 78, 3658 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    P. Cancio Pastor, L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, V.A. Yerokhin, Pachucki. Phys. Rev. Lett. 108, 143001 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    C.J. Sansonetti, J.D. Gillaspy, Phys. Rev. A 45, R1 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    P. Mueller, L.-B. Wang, G.W.F. Drake, K. Bailey, Z.-T. Lu, T.P. O’Connor, Phys. Rev. Lett. 94, 133001 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004); 97, 139903 (E) (2006)Google Scholar
  9. 9.
    T. Zelevinsky, D. Farkas, G. Gabrielse, Phys. Rev. Lett. 95, 203001 (2005); 95, 219903 (E) (2005)Google Scholar
  10. 10.
    J.S. Borbely, M.C. George, L.D. Lombardi, M. Weel, D.W. Fitzakerley, E.A. Hessels, Phys. Rev. A 79, 060503(R) (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Smiciklas, D. Shiner, Phys. Rev. Lett. 105, 123001 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    D. Shiner, R. Dixson, V. Vedantham, Phys. Rev. Lett. 74, 3553 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    D.C. Morton, Q. Wu, G.W.F. Drake, Phys. Rev. A 73, 034502 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    G.W.F. Drake, W. Nörtershäuser, Z.-C. Yan, Can. J. Phys. 83, 311 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    K. Pachucki, V.A. Yerokhin, Phys. Rev. Lett. 104, 070403 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    N. Ohtsubo, T. Aoki, Y. Torii, Opt. Lett. 37, 2865 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, H. Guo, Opt. Lett. 38, 986 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    G. Chevalier, J.M. Gagn, P. Pianarosa, J. Opt. Soc. Am. B 5, 1492 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    C.J. Sansonetti, W.C. Martin, Phys. Rev. A 29, 159 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Bushaw, W. Nörtershäuser, G.W.F. Drake, H.-J. Kluge, Phys. Rev. A 75, 052503 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    T. Fujimoto, A. Hirabayashi, S. Okuda, K. Shimizu, H. Takuma, J. Phys. B: At. Mol. Phys. 19, 571 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    D.C. Morton, Q. Wu, G.W.F. Drake, Can. J. Phys. 84, 83 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    A.Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, A. Kovsh, Appl. Phys. B 92, 501 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    X.P. Hu, P. Xu, S.N. Zhu, Photon. Res. 1, 171 (2013)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, J. Hu, J. Wang, Y. Feng, Opt. Lett. 37, 4796 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Sorem, A.L. Shawlow, Opt. Commun. 5, 148 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    P.J. Leo, G. Peach, I.B. Whittingham, J. Phys. B: At. Mol. Opt. Phys. 28, 591 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    K. Shimoda, High Resolution Spectroscopy, Vol. 13 of Topics in Applied Physics (Springer, Berlin, 1976)Google Scholar
  30. 30.
    Ph. Cahuzac, R. Damaschini, Opt. Commun. 20, 111 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    P.-L. Luo, Y.-C. Guan, J.-L. Peng, J.-T. Shy, L.-B. Wang, Phys. Rev. A 88, 054501 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    E.E. Eyler, D.E. Chieda, M.C. Stowe, M.J. Thorpe, T.R. Schibli, J. Ye, Eur. Phys. J. D 48, 43 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Shanghai Key Laboratory of Solid State Laser and Application and Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations