Applied Physics B

, Volume 120, Issue 2, pp 255–260 | Cite as

End-fire injection of guided light into optical microcavity

  • Shuai Liu
  • Zhiyuan Gu
  • Nan Zhang
  • Kaiyang Wang
  • Shumin Xiao
  • Quan Lyu
  • Qinghai Song


Coupling light into microdisk plays a key role in a number of applications such as resonant filters and optical sensors. While several approaches have successfully coupled light into microdisk efficiently, most of them suffer from the ultrahigh sensitivity to the environmental vibration. Here, we demonstrate a robust mechanism, which is termed as “end-fire injection.” By connecting an input waveguide to a circular microdisk directly, the mechanism shows that light can be efficiently coupled into optical microcavity. The coupling efficiency can be as high as 75 % when the input signals are on resonances. Our numerical results reveal that the high coupling efficiency is attributed to the constructive interference between the whispering gallery modes and the input signals. We have also shown that the end-fire injection can be further extended to the long-lived resonances with low refractive index such as n = 1.45. We believe our results will shed light on the applications of optical microcavities.


Resonant Mode Total Internal Reflection Coupling Efficiency Field Pattern Constructive Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by NSFC11204055, NSFC61222507, NSFC11374078, NCET-11-0809, Shenzhen Peacock plan under the Nos. KQCX2012080709143322 and KQCX20130627094615410, and Shenzhen Fundamental research projects under the Nos. JCYJ20130329155148184, JCYJ20140417172417110, JCYJ20140417172417096.


  1. 1.
    K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Ivan S. Grudinin, Vladimir S. Ilchenko, Lute Maleki, Ultrahigh optical Q factors of crystalline resonators in the linear regime. Phys. Rev. A 74, 063806 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    D.W. Vernooy, V.S. Ilchenko, H. Mabuchi, E.W. Streed, H.J. Kimble, High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    M. Borselli, T.J. Johnson, O. Painter, Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express 13, 1515–1530 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    F. Vollmer, S. Arnold, Whispering-gallery mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Zhu, S.K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4, 46–49 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S.E. Fraser, R.C. Flagan, K. Vahala, High sensitivity nanoparticle detection using optical microcavities. Proc. Natl. Acad. Sci. USA. 108, 5976–5979 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, Q. Gong, Cylindrical microcavity laser based on the evanescent-wavecoupled gain. Adv. Mater. 25, 5616–5620 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Cai, O. Painter, K.J. Vahala, Observation of Critical Coupling in a Fiber Taper to a SilicaMicrosphere Whispering-Gallery Mode System. Phys. Rev. Lett. 85, 74–77 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    V.B. Braginsky, M.L. Gorodetsky, V.S. Ilchenko, Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    H.-B. Lin, A.L. Huston, B.L. Justus, A.J. Campillo, Some characteristics of a droplet whispering-gallerymode laser. Opt. Lett. 11, 614–616 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    J.B. Snow, S. Qian, R.K. Chang, Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances. Opt. Lett. 10, 37–39 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    C.-L. Zou, F.-J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, G.-C. Guo, Theory of free space coupling to high-Q whispering gallery modes. Opt. Express 21, 9982–9995 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, S.W. Kim, Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers. Appl. Phys. Lett. 90, 041106 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S.W. Kim, T.T.A. Dao, J.-H. Lee, K. An, Pump-induced dynamical tunneling in a deformed microcavity laser. Phys. Rev. Lett. 104, 243601 (2010)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, An, Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser. Appl. Phys. Lett. 93, 061101 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Q.H. Song, L. Ge, A.D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, G.S. Solomon, Directional laser emission from wavelengthscale chaotic microdisk. Phys. Rev. Lett. 105, 103902 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Q. Song, L. Ge, B. Redding, H. Cao, Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett. 108, 243902 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y.D. Yang, S.J. Wang, Y.Z. Huang, Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt. Express 17, 23010–23015 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S.J. Wang, J.D. Lin, Y.Z. Huang, Y.D. Yang, K.J. Che, J.L. Xiao, Y. Du, Z.C. Fan, AlGaInAsCInP microcylinder lasers connected with an output waveguide. IEEE Photon. Technol. Lett. 22, 1349–1351 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    F.-J. Shu, C.-L. Zou, F.-W. Sun, Perpendicular coupler for whispering-gallery resonators. Opt. Lett. 37, 3123–3125 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    F. Ou, X. Li, B. Liu, Y. Huang, S.-T. Ho, Enhanced radiation-loss-based radial-waveguide-coupled electrically pumped microresonator lasers with singledirectional output. Opt. Lett. 35, 1722–1724 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Song, H. Cao, S.T. Ho, G.S. Solomon, Near-IR subwavelength microdisk lasers. Appl. Phys. Lett. 94, 061109 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shuai Liu
    • 1
  • Zhiyuan Gu
    • 1
  • Nan Zhang
    • 1
  • Kaiyang Wang
    • 1
  • Shumin Xiao
    • 2
  • Quan Lyu
    • 1
  • Qinghai Song
    • 1
    • 3
  1. 1.Department of Electronic and Information Engineering, Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenChina
  2. 2.Department of Material Science and Engineering, Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenChina
  3. 3.The National Key Laboratory on Tunable Laser TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations