Applied Physics B

, Volume 120, Issue 1, pp 123–128 | Cite as

Ho:KLuW microchip laser intracavity pumped by a diode-pumped Tm:KLuW laser

  • J. M. Serres
  • P. A. Loiko
  • X. Mateos
  • K. V. Yumashev
  • N. V. Kuleshov
  • V. Petrov
  • U. Griebner
  • M. Aguiló
  • F. Díaz
Article

Abstract

A compact intracavity-pumped microchip Ho laser is realized using stacked Tm:KLuW/Ho:KLuW crystals pumped by a laser diode at 805 nm; both crystals are cut for light propagation along the N g optical indicatrix axis and emit with polarization along the N m axis. Maximum CW output power of 285 mW is achieved at a wavelength of 2080 nm for 5.6 W absorbed pump power in the Tm:KLuW crystal with a maximum slope efficiency of 8.3 %. Maximum total (Tm3+ and Ho3+ emission) output of 887 mW with a slope efficiency of 23 % is achieved. Laser operation is obtained in the 1867–1900 nm spectral range corresponding to the Tm emission, while Ho emits at 2078–2100 nm, depending on the output coupling. The microchip Ho laser generates a near-circular output beam with M 2 < 1.1. The compact laser setup with plane–plane cavity provides automatic mode-matching condition for the Tm and Ho laser modes.

Keywords

Thermal Lens Slope Efficiency Absorb Pump Power Microchip Laser Optical Indicatrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, JOSA B 17, 723 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    D.Y. Shen, A. Abdolvand, L.J. Cooper, W.A. Clarkson, Appl. Phys. B 79, 559 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    P.A. Budni, M.L. Lemons, J.R. Mosto, E.P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 6, 629 (2000)CrossRefGoogle Scholar
  5. 5.
    R.C. Stoneman, L. Esterowitz, Opt. Lett. 17, 736 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    C. Bollig, R.A. Hayward, W.A. Clarkson, D.C. Hanna, Opt. Lett. 23, 1757 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    R. A. Hayward, W. A. Clarkson, D. C. Hanna: in Advanced Solid-State Lasers, Davos, Switzerland, Technical Digest, paper MB8, 13–16 Feb 2000Google Scholar
  8. 8.
    M. Schellhorn, A. Hirth, IEEE J. Quantum Electron. 38, 1455 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    S. So, J.I. Mackenzie, D.P. Shepherd, W.A. Clarkson, J.G. Betterton, E.K. Gorton, J.A.C. Terry, Opt. Express 14, 10481 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Schellhorn, A. Hirth, C. Kieleck, Opt. Lett. 28, 1933 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Y.-K. Kuo, Y.-A. Chang, Appl. Opt. 42, 1685 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    V. Petrov, M.C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R.M. Solé, J. Liu, U. Griebner, F. Díaz, Laser Photon. Rev. 1, 179 (2007)CrossRefGoogle Scholar
  13. 13.
    M.S. Gaponenko, P.A. Loiko, N.V. Gusakova, K.V. Yumashev, N.V. Kuleshov, A.A. Pavlyuk, Appl. Phys. B 108, 603 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz, Opt. Lett. 39, 4247 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Gaponenko, N. Kuleshov, T. Sudmeyer, Opt. Express 22, 11578 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    V. Jambunathan, X. Mateos, M.C. Pujol, J.J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, F. Díaz, Appl. Phys. B 116, 455 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J.J. Zayhowski, A. Mooradian, Opt. Lett. 14, 24 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Zayhowski, C. Dill III, Opt. Lett. 19, 1427 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    M. Segura, X. Mateos, M.C. Pujol, J.J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, Appl. Phys. B 113, 125 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    P.A. Loiko, J.M. Serres, X. Mateos, K.V. Yumashev, N.V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz, Laser Phys. Lett. 11, 075001 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Loiko, S.M. Vatnik, I.A. Vedin, A.A. Pavlyuk, K.V. Yumashev, N.V. Kuleshov, Laser Phys. Lett. 10, 125005 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    N. Hodgson, H. Weber, Laser Resonators and Beam Propagation. Fundamentals, Advanced Concepts, Applications (Springer, New York, 2005)Google Scholar
  23. 23.
    S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, Progress. Quantum Electron. 30, 89 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    P. Loiko, J.M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz, Opt. Express 22, 27976 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    P. Loiko, J.M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz, Opt. Lett. 40, 34 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. M. Serres
    • 1
  • P. A. Loiko
    • 1
    • 2
  • X. Mateos
    • 1
  • K. V. Yumashev
    • 2
  • N. V. Kuleshov
    • 2
  • V. Petrov
    • 3
  • U. Griebner
    • 3
  • M. Aguiló
    • 1
  • F. Díaz
    • 1
  1. 1.Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)Universitat Rovira i Virgili (URV)TarragonaSpain
  2. 2.Center for Optical Materials and TechnologiesBelarusian National Technical UniversityMinskBelarus
  3. 3.Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany

Personalised recommendations