Applied Physics B

, Volume 119, Issue 4, pp 765–776 | Cite as

Assessment of soot particle-size imaging with LII at Diesel engine conditions

  • E. Cenker
  • K. Kondo
  • G. Bruneaux
  • T. Dreier
  • T. Aizawa
  • C. Schulz


Two-time-step laser-induced incandescence (LII) imaging was performed in Diesel engine-relevant combustion to investigate its applicability for spatially resolved measurements of soot primary particle sizes. The method is based on evaluating gated LII signals acquired with two cameras consecutively after the laser pulse and using LII modeling to deduce the particle size from the ratio of local signals. Based on a theoretical analysis, optimized detection times and durations were chosen to minimize measurement uncertainties. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel under the Engine Combustion Network’s “Spray A” conditions at 61–68 bar with additional parametric variations in injection pressure, gas temperature, and composition. The LII measurements were supported by pyrometric imaging measurements of particle heat-up temperatures. The results were compared to particle-size and size-dispersion measurements from transmission electron microscopy of soot thermophoretically sampled at multiple axial distances from the injector. The discrepancies between the two measurement techniques are discussed to analyze uncertainties and related error sources of the two diagnostics. It is found that in such environment where particles are small and pressure is high, LII signal decay times are such that LII with standard nanosecond laser and detector equipment suffers from a strong bias toward large particles.


Laser Fluence Soot Particle Soot Volume Fraction Diesel Spray Soot Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Clement Bramoulle at IFPEN for experimental assistance. The authors are grateful to Hideyuki Yoshimura of Department of Physics, Meiji University, for providing the TEM. The authors also thank Kei Okabe, Kota Suzuki, Hiroyuki Takano, Junya Takahashi, and Yuki Hattori for their assistance in TEM analysis. Thomas Dreier and Christof Schulz acknowledge support from the German Science Foundation, DFG, through SCHU1369/3.


  1. 1.
    International Council on Clean Transportation (ICCT), Pocketbook: European Vehicle Market Statistics (Berlin, 2013) Google Scholar
  2. 2.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773–6785 (2005)CrossRefADSGoogle Scholar
  3. 3.
    J.C. Chow, J.G. Watson, J.L. Mauderly, D.L. Costa, R.E. Wyzga, S. Vedal, G.M. Hidy, S.L. Altshuler, D. Marrack, J.M. Heuss, G.T. Wolff, C. Arden Pope III, D.W. Dockery, J. Air Waste Manag. Assoc. 56, 1368–1380 (2006)CrossRefGoogle Scholar
  4. 4.
    V. Ramanathan, G. Carmichael, Nat. Geosci. 4, 221–227 (2008)CrossRefADSGoogle Scholar
  5. 5.
    L.A. Melton, Appl. Opt. 23, 2201–2208 (1984)CrossRefADSGoogle Scholar
  6. 6.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333–354 (2006)CrossRefADSGoogle Scholar
  7. 7.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503–521 (2007)CrossRefADSGoogle Scholar
  8. 8.
    B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775–2782 (2002)CrossRefGoogle Scholar
  9. 9.
    S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277–2284 (1996)CrossRefGoogle Scholar
  10. 10.
    B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Phys. B 72, 367–372 (2001)CrossRefADSGoogle Scholar
  11. 11.
    B.C. Connelly, Quantitative Characterization of Steady and Time-Varying, Sooting, Laminar Diffusion Flames Using Optical Techniques, PhD thesis (Yale University, New Haven, 2009)Google Scholar
  12. 12.
    Z. Sun, D.H. Gu, G.J. Nathan, Z.T. Alwahabi, B.B. Dally, Proc. Combust. Inst. 35, 3673–3680 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Reimann, S.-A. Kuhlmann, S. Will, Appl. Phys. B 96, 583–592 (2009)CrossRefADSGoogle Scholar
  14. 14.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B (2015). doi: 10.1007/s00340-015-6009-0 Google Scholar
  15. 15.
    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629–639 (2007)CrossRefADSGoogle Scholar
  16. 16.
    M. Hofmann, B.F. Kock, C. Schulz, in European Combustion Meeting 2007, Chania, (2007)Google Scholar
  17. 17.
    L.M. Pickett, C.L. Genzale, G. Bruneaux, L.M. Malbec, L. Hermant, C. Christiansen, J. Schramm, SAE Int. J. Engines 3, 156–181 (2010)Google Scholar
  18. 18.
    E. Cenker, G. Bruneaux, L.M. Pickett, C. Schulz, SAE Int. J. Engines 6, 352–365 (2013)CrossRefGoogle Scholar
  19. 19.
    L.M. Malbec, J. Egúsquiza, G. Bruneaux, M. Meijer, SAE Int. J. Engines 6, 1642–1660 (2013)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052–2062 (2003)CrossRefADSGoogle Scholar
  22. 22.
    H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)CrossRefADSGoogle Scholar
  23. 23.
    H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641–648 (2011)CrossRefGoogle Scholar
  24. 24.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118, 169–183 (2015)CrossRefADSGoogle Scholar
  25. 25.
    B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709–717 (1997)CrossRefADSGoogle Scholar
  26. 26.
    B.B. Collier, M.J. McShane, Anal. Chem. 84, 4725–4731 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, J. Bood, Opt. Express 20, 3043–3056 (2012)CrossRefADSGoogle Scholar
  28. 28.
    H.C. Hottel, F.P. Broughton, Ind. Eng. Chem. 4, 166–174 (1932)Google Scholar
  29. 29.
    Y.A. Levendis, K.R. Estrada, H.C. Hottel, Rev. Sci. Instrum. 63, 3608–3621 (1992)CrossRefADSGoogle Scholar
  30. 30.
    H. Zhao, N. Ladommatos, Prog. Energy Combust. Sci. 24, 221–255 (1998)CrossRefGoogle Scholar
  31. 31.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623–636 (2009)CrossRefADSGoogle Scholar
  32. 32.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439–450 (2000)CrossRefGoogle Scholar
  33. 33.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180–190 (2004)CrossRefGoogle Scholar
  34. 34.
    B. Bougie, L.C. Ganippa, A.P. van Vliet, W.L. Meerts, N.J. Dam, J.J. ter Meulen, Proc. Combust. Inst. 31, 685–691 (2007)CrossRefGoogle Scholar
  35. 35.
    B. Bougie, L.C. Ganippa, N.J. Dam, J.J. ter Meulen, Appl. Phys. B 83, 477–485 (2006)CrossRefADSGoogle Scholar
  36. 36.
    T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403–411 (2006)CrossRefADSGoogle Scholar
  37. 37.
    M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B 104, 427–438 (2011)CrossRefADSGoogle Scholar
  38. 38.
    H.A. Michelsen, Appl. Phys. B 83, 443–448 (2006)CrossRefADSGoogle Scholar
  39. 39.
    M. Meijer, B. Somers, J. Johnson, J. Naber, S.-Y. Lee, L.-M. Malbec, G. Bruneaux, L.M. Pickett, M. Bardi, R. Payri, T. Bazyn, At. Sprays 22, 777–806 (2012)CrossRefGoogle Scholar
  40. 40.
    G. Tea, G. Bruneaux, J.T. Kashdan, C. Schulz, Proc. Combust. Inst. 33, 783–790 (2011)CrossRefGoogle Scholar
  41. 41.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203–218 (1983)CrossRefGoogle Scholar
  42. 42.
    S. Kook, L.M. Pickett, Proc. Combust. Inst. 33, 2911–2918 (2011)CrossRefGoogle Scholar
  43. 43.
    T. Aizawa, H. Nishigai, K. Kondo, T. Yamaguchi, J.-G. Nerva, C. Genzale, S. Kook, L.M. Pickett, SAE Int. J. Fuels Lubr. 5, 665–673 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Kondo, J. Takahashi, T. Aizawa, SAE Int. J. Fuels Lubr. 7, 683–692 (2014)CrossRefGoogle Scholar
  45. 45.
    K. Kondo, T. Aizawa, S. Kook, L.M. Pickett, SAE Technical Paper 2013–01–0908 (2013)Google Scholar
  46. 46.
    M.P.B. Musculus, S. Singh, R.D. Reitz, Combust. Flame 153, 216–227 (2008)CrossRefGoogle Scholar
  47. 47.
    L.M. Pickett, D.L. Siebers, Int. J. Engine Res. 7, 103–130 (2006)CrossRefGoogle Scholar
  48. 48.
    L.M. Pickett, J. Manin, C.L. Genzale, D. Siebers, M.P.B. Musculus, C.A. Idicheria, SAE Int. J. Engines 4, 764–799 (2011)CrossRefGoogle Scholar
  49. 49.
    M. Bolla, Y.M. Wright, K. Boulouchos, G. Borghesi, E. Mastorakos, Combust. Sci. Technol. 185, 766–793 (2013)CrossRefGoogle Scholar
  50. 50.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79–92 (2006)CrossRefGoogle Scholar
  51. 51.
    J. Johnsson, H. Bladh, P.-E. Bengtsson, Appl. Phys. B 99, 817–823 (2010)CrossRefADSGoogle Scholar
  52. 52.
    S. Kook, R. Zhang, K. Szeto, L.M. Pickett, T. Aizawa, SAE Int. J. Fuels Lubr. 6, 80–97 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. Cenker
    • 1
    • 2
    • 3
  • K. Kondo
    • 4
  • G. Bruneaux
    • 1
    • 2
  • T. Dreier
    • 3
  • T. Aizawa
    • 4
  • C. Schulz
    • 3
  1. 1.IFP Energies NouvellesInstitut Carnot IFPEN Transports EnergieRueil-MalmaisonFrance
  2. 2.École Centrale ParisChatenay-MalabryFrance
  3. 3.Institute for Combustion and Gas Dynamics – Reactive Fluids (IVG) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburgGermany
  4. 4.Meiji UniversityTokyoJapan

Personalised recommendations