Applied Physics B

, Volume 119, Issue 3, pp 463–467 | Cite as

Laser doping of Sb into ZnO nanowires in the Sb nanoparticle-dispersed liquid

  • Hirotaka Kawahara
  • Tetsuya Shimogaki
  • Mitsuhiro Higashihata
  • Hiroshi Ikenoue
  • Daisuke Nakamura
  • Tatsuo Okada


We succeed in fabricating Sb-doped ZnO nanowires by laser doping using Sb nanoparticles (Sb NPs). Vertically aligned ZnO nanowires with a diameter of 100 nm were synthesized by the nanoparticles-assisted pulsed laser deposition. Sb NPs were prepared by laser ablation in liquid. The average size of 50 nm Sb NPs was successfully fabricated by laser ablation in ethanol. Subsequently, laser doping was performed by irradiating Nd:YAG laser beam (355 nm) in Sb-dispersed ethanol. After laser doping, the tip of ZnO nanowires was slightly deformed into spherical shape by laser heating. A rectifying property with a threshold voltage of 4.5 V was observed between n-type ZnO nanowires and Sb-doped ZnO nanowires.


Group Versus Element Laser Irradiation Time Laser Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.L. Chen, J.D. Lu, Z.Z. Ye, Y.M. Lin, B.H. Zhao, Y.M. Ye, J.S. Li, L.P. Zhu, Appl. Phys. Lett. 87, 252106 (2005)CrossRefADSGoogle Scholar
  2. 2.
    A.B. Yankovich, B. Puchala, F. Wang, J.H. Seo, D. Morgan, X. Wang, Z. Ma, A.V. Kvit, P.M. Voyles, Nano Lett. 12, 1311 (2012)CrossRefADSGoogle Scholar
  3. 3.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)CrossRefADSGoogle Scholar
  4. 4.
    Z.Y. Xiao, Y.C. Liu, R. Mu, D.X. Zhao, J.Y. Zhang, Appl. Phys. Lett. 92, 052106 (2008)CrossRefADSGoogle Scholar
  5. 5.
    K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Hong, S.J. Park, Appl. Phys. Lett. 83, 63 (2003)CrossRefADSGoogle Scholar
  6. 6.
    V. Vaithianathan, B.T. Lee, S.S. Kim, J. Appl. Phys. 98, 043519 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W. White, J. Cryst. Growth. 216, 330 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Y.C. Huang, L.W. Weng, W.Y. Uen, S.M. Lan, Z.Y. Li, S.M. Liao, T.Y. Lin, T.N. Yang, J. Alloys Compd. 509, 1980 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Nat. Nanotech. 6, 506 (2011)CrossRefADSGoogle Scholar
  10. 10.
    T. Yang, B. Yao, T.T. Zhao, G.Z. Xing, H. Wang, H.L. Pan, R. Deng, Y.R. Sui, L.L. Gao, H.Z. Wang, T. Wu, D.Z. Shen, J. Alloys Compd. 509, 5426 (2011)CrossRefGoogle Scholar
  11. 11.
    J.L. Lyons, A. Janotti, C.G. Van de Valle, Appl. Phys. Lett. 95, 252105 (2009)CrossRefADSGoogle Scholar
  12. 12.
    S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504 (2004)CrossRefADSGoogle Scholar
  13. 13.
    C.H. Zang, D.X. Zhao, Y. Tang, Z. Guo, J.Y. Zhang, D.Z. Shen, Y.C. Liu, Chem. Phys. Lett. 452, 148 (2008)CrossRefADSGoogle Scholar
  14. 14.
    G. Wang, S. Chu, N. Zhan, Y. Lin, L. Chernyak, J. Liu, Appl. Phys. Lett. 98, 041107 (2011)CrossRefADSGoogle Scholar
  15. 15.
    X.H. Pan, Z.Z. Ye, J.S. Li, X.Q. Gu, Y.J. Zeng, H.P. He, L.P. Zhu, Y. Che, Appl. Surf. Sci. 253, 5067 (2007)CrossRefADSGoogle Scholar
  16. 16.
    L.J. Mandalapu, Z. Yang, S. Chu, J.L. Liu, Appl. Phys. Lett. 92, 122101 (2008)CrossRefADSGoogle Scholar
  17. 17.
    X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Thin Solid Films 518, 5687 (2010)CrossRefADSGoogle Scholar
  18. 18.
    T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Stat. Sol. 229, 911 (2002)CrossRefADSGoogle Scholar
  19. 19.
    D. Nakamura, K. Okazaki, I.A. Palani, K. Kubo, K. Tsuta, M. Higashihata, T. Okada, Proc. SPIE 8245, 82450N (2012)CrossRefGoogle Scholar
  20. 20.
    D. Nakamura, K. Okazaki, I.A. Palani, M. Higashihata, T. Okada, Appl. Phys. A 103, 959 (2011)CrossRefADSGoogle Scholar
  21. 21.
    H. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 5, 6237 (1997)CrossRefADSGoogle Scholar
  22. 22.
    X. Wang, Y. Ding, D. Yuan, J. Hong, Y. Liu, C.P. Wong, C. Hu, Z.L. Wang, Nano Res. 5, 412 (2012)CrossRefADSGoogle Scholar
  23. 23.
    J. Jang, S. Park, N. Frazer, J. Ketterson, S. Lee, B. Roy, J. Cho, Solid State Commun. 152, 1241 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Y. Yang, J. Qi, Q. Liao, Y. Zhang, L. Tang, Z. Qin, J. Phys. Chem. C 112, 17916 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Ahmad, C. Pan, J. Zhu, J. Mater. Chem. 20, 7169 (2010)CrossRefGoogle Scholar
  26. 26.
    K. Samanta, P. Bhattacharya, R.S. Katiyar, J. Appl. Phys. 108, 113501 (2010)CrossRefADSGoogle Scholar
  27. 27.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 152101 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hirotaka Kawahara
    • 1
  • Tetsuya Shimogaki
    • 1
  • Mitsuhiro Higashihata
    • 1
  • Hiroshi Ikenoue
    • 1
  • Daisuke Nakamura
    • 1
  • Tatsuo Okada
    • 1
  1. 1.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations