Advertisement

Applied Physics B

, Volume 119, Issue 2, pp 233–240 | Cite as

Compact, robust, and spectrally pure diode-laser system with a filtered output and a tunable copy for absolute referencing

  • E. Kirilov
  • M. J. Mark
  • M. Segl
  • H.-C. NägerlEmail author
Article

Abstract

We report on a design of a compact laser system composed of an extended-cavity diode laser with high passive stability and a pre-filter Fabry–Perot cavity. The laser is frequency-stabilized relative to the cavity using a serrodyne technique with a correction bandwidth of ≥6 MHz and a dynamic range of ≥700 MHz. The free-running laser system has a power spectral density (PSD) ≤100 Hz2/Hz centered mainly in the acoustic frequency range. A highly tunable, 0.5–1.3 GHz copy of the spectrally pure output beam is provided, which can be used for further stabilization of the laser system to an ultra-stable reference. We demonstrate a simple one-channel lock to such a reference that brings down the PSD to the sub-Hz level. The tuning, frequency stabilization, and sideband imprinting are achieved by a minimum number of key elements comprising a fibered electro-optic modulator, acousto-optic modulator, and a nonlinear transmission line. The system is easy to operate, scalable, and highly applicable to atomic/molecular experiments demanding high spectral purity, long-term stability, and robustness.

Keywords

Corner Frequency Acoustic Noise Optical Feedback Direct Digital Synthesizer Reference Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank J. Berquist for providing the ULE cavity, J. Danzl for helping with the design of the PID circuit, and K. Aikawa for useful suggestions on the manuscript. We acknowledge generous support by R. Grimm. The work is supported by the European Research Council (ERC) under Project No. 278417.

References

  1. 1.
    S.A. Diddams, T. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W.M. Itano, W.D. Lee, C.W. Oates, K.R. Vogel, D.J. Wineland, An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001)CrossRefADSGoogle Scholar
  2. 2.
    C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Optical clocks and relativity. Science 329, 1630–1633 (2010)CrossRefADSGoogle Scholar
  3. 3.
    H. Marion, F. Pereira Dos Santos, M. Abgrall, S. Zhang, Y. Sortais, S. Bize, I. Maksimovic, D. Calonico, J. Grünert, C. Mandache, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, Search for variations of fundamental constants using atomic fountain clocks. Phys. Rev. Lett. 90, 150801 (2003)CrossRefADSGoogle Scholar
  4. 4.
    C. Eisele, A.Y. Nevsky, S. Schiller, Laboratory test of the isotropy of light propagation at the \(10^{-17}\) level. Phys. Rev. Lett. 103, 090401 (2009)CrossRefADSGoogle Scholar
  5. 5.
    B.P. Abbott, LIGO: The laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 72, 076901 (2009)CrossRefADSGoogle Scholar
  6. 6.
    P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos, M. Chwalla, M. Hennrich, R. Blatt, A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013)CrossRefADSGoogle Scholar
  7. 7.
    N. Kolachevsky, J. Alnis, C.G. Parthey, A. Matveev, R. Landig, T.W. Hänsch, Low phase noise diode laser oscillator for 1S–2S spectroscopy in atomic hydrogen. Opt. Lett. 36, 4299–4301 (2011)CrossRefADSGoogle Scholar
  8. 8.
    J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.-C. Nägerl, Quantum gas of deeply bound ground-state molecules. Science 321, 1062 (2008)CrossRefADSGoogle Scholar
  9. 9.
    K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, A high phase-space-density gas of polar molecules. Science 322, 231 (2008)CrossRefADSGoogle Scholar
  10. 10.
    M.J. Mark, J.G. Danzl, E. Haller, M. Gustavsson, N. Bouloufa, O. Dulieu, H. Salami, T. Bergeman, H. Ritsch, R. Hart, H.-C. Nägerl, Dark resonances for ground-state transfer of molecular quantum gases. Appl. Phys. B 95, 219–225 (2009)CrossRefADSGoogle Scholar
  11. 11.
    J.G. Danzl, M.J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J.M. Hutson, H.-C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Aikawa, J. Kobayashi, K. Oasa, T. Kishimoto, M. Ueda, S. Inouye, Narrow-linewidth light source for a coherent Raman transfer of ultracold molecules. Opt. Express 19, 14479–14486 (2011)CrossRefADSGoogle Scholar
  13. 13.
    T. Takekoshi, L. Reichsöllner, A. Schindewolf, J.M. Hutson, C.R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, H.-C. Nägerl, Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014)CrossRefADSGoogle Scholar
  14. 14.
    T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 6, 687–692 (2012)CrossRefADSGoogle Scholar
  15. 15.
    F. Riehle, Freqency standards (Wiley, New York, 2004)Google Scholar
  16. 16.
    C.H. Breant, Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron. 25, 1131–1142 (1989)CrossRefADSGoogle Scholar
  17. 17.
    E. Kirilov, S. Putterman, 2-Photon ionization for efficient seeding and trapping of strontium ions. Eur. Phys. J. D 54, 683–691 (2009)CrossRefADSGoogle Scholar
  18. 18.
    K. Döringshoff, I. Ernsting, R.-H. Rinkleff, S. Schiller, A. Wicht, Low-noise, tunable diode laser for ultra-high-resolution spectroscopy. Opt. Lett. 32, 2876–2878 (2007)CrossRefADSGoogle Scholar
  19. 19.
    J. Labaziewicz, P. Richerme, K.R. Brown, I.L. Chuang, K. Hayasaka, Compact, filtered diode laser system for precision spectroscopy. Opt. Lett. 32, 572–574 (2007)CrossRefADSGoogle Scholar
  20. 20.
    E.D. Black, An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001)CrossRefADSGoogle Scholar
  21. 21.
    A.N. Matveev, N.N. Kolachevsky, J. Alnis, T.W. Hänsch, Spectral parameters of reference-cavity-stabilised lasers. Quantum Electron. 38, 391–400 (2008)CrossRefADSGoogle Scholar
  22. 22.
    L.P. Yatsenko, B.W. Shore, K. Bergmann, Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage. Phys. Rev. A 89, 013831 (2014)CrossRefADSGoogle Scholar
  23. 23.
    C. Petridis, I.D. Lindsay, D.J.M. Stothard, M. Ebrahimzadeh, Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating. Rev. Sci. Instrum. 72, 3811–3815 (2001)CrossRefADSGoogle Scholar
  24. 24.
    R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, P. Bouyer, Robust laser frequency stabilization by serrodyne modulation. Opt. Lett. 37, 1005–1007 (2012)CrossRefADSGoogle Scholar
  25. 25.
    E. Afshari, S. Member, A. Hajimiri, Nonlinear transmission lines. IEEE J. Solid-State Circuits 40, 744–752 (2005)CrossRefGoogle Scholar
  26. 26.
    A commercial ECDL design based on a flexture design is available by the company Toptica (patents DE102007028499 and US7970024)Google Scholar
  27. 27.
    D.M.S. Johnson, J.M. Hogan, S.-W. Chiow, M.A. Kasevich, Broadband optical serrodyne frequency shifting. Opt. Lett. 35, 745–747 (2010)CrossRefADSGoogle Scholar
  28. 28.
    E.C. Cook, P.J. Martin, T.L. Brown-Heft, J.C. Garman, D.A. Steck, High passive-stability diode-laser design for use in atomic-physics experiments. Rev. Sci. Instrum. 83, 043101 (2012)CrossRefADSGoogle Scholar
  29. 29.
    T.C. Briles, D.C. Yost, A. Cingöz, J. Ye, T.R. Schibli, Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Opt. Express 18, 9739–9746 (2010)CrossRefADSGoogle Scholar
  30. 30.
    N.C. Wong, J.L. Hall, Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection. J. Opt. Soc. Am. B 2, 1527–1533 (1985)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. Kirilov
    • 1
  • M. J. Mark
    • 1
  • M. Segl
    • 1
  • H.-C. Nägerl
    • 1
    Email author
  1. 1.Institut für Experimentalphysik und Zentrum für QuantenphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations