Applied Physics B

, Volume 119, Issue 3, pp 401–411 | Cite as

Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse

  • Yu. V. Petrov
  • K. P. Migdal
  • N. A. Inogamov
  • V. V. Zhakhovsky
Article

Abstract

A short laser pulse converts metal into a two-temperature state with the electron temperature higher than the ion temperature. To describe the electron contributions to the total internal energy and pressure arising as a result of electron heating, we develop the new analytic approximation formulae for two-temperature thermodynamics of metal. Those approximations are based on quantum calculations performed with density functional theory (DFT) packages. DFT calculations provide the internal energies and pressures for densities of the order of solid-state density and for electron temperatures up to 55 kK. The new analytic approximations give a better accuracy in hydrodynamic simulation of laser–matter interaction and should be used instead of the less accurate expressions based on the Fermi model of ideal electron gas, which is widely used for two-temperature states of metal.

Keywords

Density Functional Theory Density Functional Theory Calculation Density Functional Theory Result Gruneisen Parameter Cold Energy 

Notes

Acknowledgments

The research was performed under financial support from Russian Science Foundation (RSCF) (Project No. 14-19-01599).

References

  1. 1.
    M.B. Agranat, N.E. Andreev, S.I. Ashitkov, M.E. Veysman, P.R. Levashov, A.V. Ovchinnikov, D.S. Sitnikov, V.E. Fortov, K.V. Khishchenko, JETP Lett. 85, 271–276 (2007)CrossRefADSGoogle Scholar
  2. 2.
    J.P. Colombier, P. Combis, E. Audouard, R. Stoian, Phys. Rev. E 77, 036409 (2008)CrossRefADSGoogle Scholar
  3. 3.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)CrossRefADSGoogle Scholar
  4. 4.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, V.V. Shepelev, P.S. Komarov, A.V. Ovchinnikov, D.S. Sitnikov, YuV Petrov, M.B. Agranat, S.I. Anisimov, V.E. Fortov, Contrib. Plasma Phys. 51(4), 367–374 (2011)CrossRefADSGoogle Scholar
  5. 5.
    P.A. Loboda, N.A. Smirnov, A.A. Shadrin, N.G. Karlykhanov, High Energy Density Phys. 7, 361–370 (2011)CrossRefADSGoogle Scholar
  6. 6.
    S. Anisimov, B. Kapeliovich, T. Perel’man, Sov. Phys. JETP 39, 375–377 (1974)ADSGoogle Scholar
  7. 7.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Phys. Rev. E 65, 016409 (2001)CrossRefADSGoogle Scholar
  8. 8.
    A.V. Bushman, G.I. Kanel’, A.L. Ni, V.E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, London, 1993)Google Scholar
  9. 9.
  10. 10.
    N.A. Inogamov, YuV Petrov, V.V. Zhakhovsky, V.A. Khokhlov, B.J. Demaske, S.I. Ashitkov, K.V. Khishchenko, K.P. Migdal, M.B. Agranat, S.I. Anisimov, V.E. Fortov, I.I. Oleynik, in International Symposium on High Power Laser Ablation 2012. AIP Conference Proceedings 1464, 593–608 (2012). doi: 10.1063/1.4739912
  11. 11.
    K.P. Migdal, Yu.V. Petrov, and N.A. Inogamov, Fundamentals of laser-assisted micro- and nanotechnologies 2013, ed. by V.P. Veiko, T.A. Vartanyan, Proceedings of SPIE, Vol. 9065, 906503, (2013). doi: 10.1117/12.2053172
  12. 12.
    V. Recoules, J. Clerouin, G. Zerah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)CrossRefADSGoogle Scholar
  13. 13.
    E. Bevillon, J.P. Colombier, V. Recoules, R. Stoian, Phys. Rev. B 89, 115117 (2014)CrossRefADSGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)Google Scholar
  15. 15.
    S. Khakshouri, D. Alfe, D.M. Duffy, Phys. Rev. B 78, 224304 (2008)CrossRefADSGoogle Scholar
  16. 16.
    G.V. Sinko, N.A. Smirnov, A.A. Ovechkin, P.R. Levashov, K.V. Khishchenko, High Energy Density Phys. 9, 309–314 (2013)CrossRefADSGoogle Scholar
  17. 17.
    Zh Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)CrossRefADSGoogle Scholar
  18. 18.
    American Institute of Physics Handbook, 3rd edn. (McGraw-Hill, New York, 1972)Google Scholar
  19. 19.
    D.K. Ilnitsky, V.A. Khokhlov, N.A. Inogamov, V.V. Zhakhovsky, YuV Petrov, K.V. Khishchenko, K.P. Migdal, S.I. Anisimov, J. Phys. Conf. Ser. 500, 032021 (2014)CrossRefADSGoogle Scholar
  20. 20.
    N.A. Inogamov, V.V. Zhakhovsky, V.A. Khokhlov, B.J. Demaske, K.V. Khishchenko, I.I. Oleynik, J. Phys. Conf. Ser. 500, 192023 (2014)CrossRefADSGoogle Scholar
  21. 21.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, Y.V. Petrov, P.S. Komarov, M.B. Agranat, S.I. Anisimov, K. Nishihara, Appl. Surf. Sci. 255(24), 9712–9716 (2009). arXiv:0812.2965CrossRefADSGoogle Scholar
  22. 22.
    V.V. Zhakhovskii, N.A. Inogamov, YuV Petrov, S.I. Ashitkov, K. Nishihara, Appl. Surf. Sci. 255(24), 9592–9596 (2009)CrossRefADSGoogle Scholar
  23. 23.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, P.S. Komarov, A.V. Ovchinnikov, V.E. Fortov, V.A. Khokhlov, V.V. Shepelev, JETP Lett. 91(9), 471–477 (2010)CrossRefADSGoogle Scholar
  24. 24.
    N.A. Inogamov, V.V. Zhakhovsky, V.A. Khokhlov, V.V. Shepelev, JETP Lett. 93(4), 226–232 (2011)CrossRefADSGoogle Scholar
  25. 25.
    G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  26. 26.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)CrossRefADSGoogle Scholar
  27. 27.
  28. 28.
    P.R. Levashov, K.V. Khishchenko, AIP Conf. Proc. 706, 87–90 (2004)CrossRefADSGoogle Scholar
  29. 29.
    S.B. Kormer, V.D. Urlin, A.I. Funtikov, Sov. Phys. JETP 15(3), 477–488 (1962)Google Scholar
  30. 30.
    YuV Petrov, N.A. Inogamov, JETP Lett. 98(5), 278–284 (2013)CrossRefADSGoogle Scholar
  31. 31.
    N.A. Inogamov, V.V. Zhakhovsky et al., Contrib. Plasma Phys. 53(10), 796–810 (2013)CrossRefADSGoogle Scholar
  32. 32.
    B.I. Cho, K. Engelhorn, A.A. Correa et al., Phys. Rev. Lett. 106, 167601 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yu. V. Petrov
    • 1
    • 2
  • K. P. Migdal
    • 3
  • N. A. Inogamov
    • 1
    • 3
  • V. V. Zhakhovsky
    • 3
    • 4
  1. 1.Landau Institute for Theoretical Physics of Russian Academy of SciencesChernogolovkaRussian Federation
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussian Federation
  3. 3.All-Russia Research Institute of Automatics (SC Rosatom)MoscowRussian Federation
  4. 4.Joint Institute of High Temperatures of Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations