Applied Physics B

, Volume 119, Issue 3, pp 413–419 | Cite as

Hydrodynamics driven by ultrashort laser pulse: simulations and the optical pump—X-ray probe experiment

  • N. A. Inogamov
  • V. V. Zhakhovsky
  • N. Hasegawa
  • M. Nishikino
  • M. Yamagiwa
  • M. Ishino
  • M. B. Agranat
  • S. I. Ashitkov
  • A. Ya. Faenov
  • V. A. Khokhlov
  • D. K. Ilnitsky
  • Yu. V. Petrov
  • K. P. Migdal
  • T. A. Pikuz
  • S. Takayoshi
  • T. Eyama
  • N. Kakimoto
  • T. Tomita
  • M. Baba
  • Y. Minami
  • T. Suemoto
  • T. Kawachi
Article

Abstract

Spatial structures of ablative mass flow produced by femtosecond laser pulses are studied. In experiments with a gold film, the Ti:sapp laser pulse having a focal size of 100 microns on a target was used, while a soft X-ray probe pulse was utilized for diagnostics. The experimental data are compared with simulated mass flows obtained by two-temperature hydrodynamics and molecular dynamics methods. Simulation shows evolution of a thin surface layer pressurized after electron–ion thermalization, which leads to melting, cavitation and formation of spallation liquid layer. The calculated asymptotic surface velocity of this layer as a function of fluence is in reasonably good agreement with experimental data.

Keywords

Pump Pulse Ultrashort Laser Pulse Ablation Threshold Nucleation Layer Fresnel Formula 

Notes

Acknowledgments

The research (NAI, VVZh, VAKh, DKI, YVP, KPM, AYF, TAP) has been performed under financial support from Russian Science Foundation (RSCF) (Project No. 14-19-01599). This work (except NAI, VVZh, VAKh, DKI, YVP, KPM) was partly supported by Grant-in-Aid for Scientific Research (B), No. 25289244 (2013), from MEXT and bilateral program: Japan Society for the Promotion of Science (JSPA) and Russian Academy of Sciences (RAS) under the JSPS-RAS Joint Research Program (RFBR Grant 14-02-92107).

References

  1. 1.
    9th International Conference on Photo-Excited Processes and Applications, Program & Technical Digest, September 29-October 3, (2014), Matsue Japan. Conference Chairs: Koji Sugioka, Yasuyuki Tsuboi. icpepa9.comGoogle Scholar
  2. 2.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81(1), 224–227 (1998)CrossRefADSGoogle Scholar
  3. 3.
    N.A. Inogamov, Y.V. Petrov, S.I. Anisimov et al., JETP Lett. 69(4), 310–316 (1999)CrossRefADSGoogle Scholar
  4. 4.
    S.I. Anisimov, N.A. Inogamov, A.M. Oparin et al., Appl. Phys. A 69, 617–620 (1999)CrossRefADSGoogle Scholar
  5. 5.
    V.V. Zhakhovskii, K. Nishihara, S.I. Anisimov, N.A. Inogamov, JETP Lett. 71(4), 167–172 (2000)CrossRefADSGoogle Scholar
  6. 6.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)CrossRefADSGoogle Scholar
  7. 7.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov et al., JETP Lett. 77(11), 606–610 (2003)CrossRefADSGoogle Scholar
  8. 8.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91(22), 225502 (2003). (4 pages)CrossRefADSGoogle Scholar
  9. 9.
    M. Gill-Comeau, L.J. Lewis, Phys. Rev. B 84, 224110 (2011)CrossRefADSGoogle Scholar
  10. 10.
    N.N. Nedialkov, P.A. Atanasov, S. Amoruso, R. Bruzzese, X. Wang, Appl. Surf. Sci. 253, 7761–7766 (2007)CrossRefADSGoogle Scholar
  11. 11.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892–11906 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Wu, L.V. Zhigilei, Appl. Phys. A 114, 11–32 (2014)CrossRefADSGoogle Scholar
  13. 13.
    M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007)CrossRefADSGoogle Scholar
  14. 14.
    T. Suemoto, K. Terakawa, Y. Ochi et al., Opt. Express 18(13), 14114–14122 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Tomita, M. Yamamoto, N. Hasegawa et al., Opt. Express 20(28), 29329–29337 (2012)CrossRefADSGoogle Scholar
  16. 16.
    M. Baba, M. Nishikino, N. Hasegawa et al., Jpn. J. Appl. Phys. 53, 080302 (2014). (4 pages)CrossRefADSGoogle Scholar
  17. 17.
    T. Tomita, M. Nishikino, N. Hasegawa et al., J. Laser Micro Nanoeng. 9(2), 137–142 (2014)CrossRefGoogle Scholar
  18. 18.
    N.A. Inogamov, Y.V. Petrov, V.V. Zhakhovsky et al., in International Symposium High Power Laser Ablation 2012. AIP Conference Proceedings vol 1464, (2012), pp. 593–608. doi: 10.1063/1.4739912
  19. 19.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 82, 064113 (2010)CrossRefADSGoogle Scholar
  20. 20.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 87, 054109 (2013)CrossRefADSGoogle Scholar
  21. 21.
    N.A. Inogamov, V.V. Zhakhovsky, V.A. Khokhlov, Zhurnal Exp. Theor. Fiziki 147(1), 20–56 (2015). (In Russian, will be translated into English soon)Google Scholar
  22. 22.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov et al., JETP 107(1), 1–19 (2008)CrossRefADSGoogle Scholar
  23. 23.
    W.-L. Chan, R.S. Averback, D.G. Cahill, Appl. Phys. A 97, 287–294 (2009)CrossRefADSGoogle Scholar
  24. 24.
    V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, K. Nishihara, Appl. Surf. Sci. 255(24), 9592–9596 (2009)CrossRefADSGoogle Scholar
  25. 25.
    T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Spall Fracture (Springer, New York, 2003)Google Scholar
  26. 26.
    G.I. Kanel, S.V. Razorenov, V.E. Fortov, Shock Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004)CrossRefGoogle Scholar
  27. 27.
    G.I. Kanel, V.E. Fortov, S.V. Razorenov, Phys. Uspekhi 50, 771–791 (2007)CrossRefADSGoogle Scholar
  28. 28.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov et al., Appl. Surf. Sci. 255(24), 9712–9716 (2009). arXiv:0812.2965 (physics.optics)
  29. 29.
    V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, JETP Lett. 87(8), 423–427 (2008)CrossRefADSGoogle Scholar
  30. 30.
    S.I. Ashitkov, N.A. Inogamov, V.V. Zhakhovsky et al., JETP Lett. 95(4), 176–181 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. A. Inogamov
    • 1
    • 2
  • V. V. Zhakhovsky
    • 2
    • 3
  • N. Hasegawa
    • 4
  • M. Nishikino
    • 4
  • M. Yamagiwa
    • 4
  • M. Ishino
    • 4
  • M. B. Agranat
    • 3
  • S. I. Ashitkov
    • 3
  • A. Ya. Faenov
    • 3
    • 5
  • V. A. Khokhlov
    • 1
  • D. K. Ilnitsky
    • 2
  • Yu. V. Petrov
    • 1
  • K. P. Migdal
    • 2
  • T. A. Pikuz
    • 3
    • 6
  • S. Takayoshi
    • 7
  • T. Eyama
    • 7
  • N. Kakimoto
    • 7
  • T. Tomita
    • 7
  • M. Baba
    • 8
  • Y. Minami
    • 8
  • T. Suemoto
    • 8
  • T. Kawachi
    • 4
  1. 1.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.All-Russia Research Institute of AutomaticsROSATOMMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  4. 4.Quantum Beam Science DirectorateJapan Atomic Energy AgencyKizugawaJapan
  5. 5.Institute for Academic InitiativesOsaka UniversitySuitaJapan
  6. 6.Graduate School of EngineeringOsaka UniversitySuitaJapan
  7. 7.Faculty of EngineeringThe University of TokushimaTokushimaJapan
  8. 8.Institute of Solid State PhysicsUniversity of TokyoKashiwaJapan

Personalised recommendations