Applied Physics B

, Volume 119, Issue 1, pp 119–131 | Cite as

Compact highly sensitive multi-species airborne mid-IR spectrometer

  • Dirk Richter
  • Petter Weibring
  • James G. Walega
  • Alan Fried
  • Scott M. Spuler
  • Matthew S. Taubman
Article

Abstract

We report on the development and airborne field deployment of a mid-IR laser-based spectrometer. The instrument was configured for the simultaneous in situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90 % airborne measurement coverage during the recent air quality study over the Colorado Front Range, FRAPPÉ 2014. Airborne detection sensitivities of ~15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

Keywords

Amplify Spontaneous Emission Periodically Pole Lithium Niobate Difference Frequency Generation Tunable Laser Source Periodically Pole Lithium Niobate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank Dr. Peter Bernath at Old Dominion University for providing us with the latest ethane spectroscopic database as well as high-resolution spectra for potential interferences on our C2H6 channel. We also wish to acknowledge Dr. Eric Apel at NCAR for providing us with various calibration gas mixtures, and Gary Granger at NCAR for his significant contribution to the software development.

References

  1. 1.
    A. Fried, D. Richter, Infrared Absorption Spectroscopy (Blackwell, Oxford, 2006), pp. 72–146Google Scholar
  2. 2.
    F. Tittel, D. Richter, A. Fried, Top. Appl. Phys. 89, 445 (2003)Google Scholar
  3. 3.
    J. Hodgkinson, R. P. Tatam, Meas. Sci. Technol. 24, 012004 (2013)Google Scholar
  4. 4.
    T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Pet́ron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, A. Kort, T.I. Yacovitch, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol. 48, 8028–8034 (2014)CrossRefADSGoogle Scholar
  5. 5.
    G.W. Santoni, B.C. Daube, E.A. Kort, R. Jimenez, S. Park, J.V. Pittman, E. Gottlieb, B. Xiang, M.S. Zahniser, D.D. Nelson, Atmos. Meas. Tech. 7, 1509 (2014)CrossRefGoogle Scholar
  6. 6.
    D. Richter, A. Fried, P. Weibring, Laser Photonics Rev 3, 343 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Dyroff, D. Fütterer, A. Zahn, Appl. Phys. B 98, 537 (2010)CrossRefADSGoogle Scholar
  8. 8.
    P. Weibring, D. Richter, J.G. Walega, A. Fried, Opt. Express 15, 13476 (2007)CrossRefADSGoogle Scholar
  9. 9.
    P. Weibring, D. Richter, J.G. Walega, L. Rippe, A. Fried, Opt. Express 18, 27670 (2010)CrossRefADSGoogle Scholar
  10. 10.
    R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997)CrossRefADSGoogle Scholar
  11. 11.
    V. Kuhn, D. Kracht, J. Neumann, P. Weßels, Opt. Lett. 35, 4105 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Richter, US Patent #7,869,127 (11 Jan 2011)Google Scholar
  13. 13.
    D. Richter, B. Wert, A. Fried, P. Weibring, J.G. Walega, J.W.C. White, B.H. Vaughn, F.K. Tittel, Opt. Lett. 34, 172 (2009)CrossRefADSGoogle Scholar
  14. 14.
    P. Weibring, D. Richter, A. Fried, J.G. Walega, C. Dyroff, Appl. Phys. B 85, 207 (2006)CrossRefADSGoogle Scholar
  15. 15.
    J.B. McManus, P.L. Kebabian, M.S. Zahniser, Appl. Opt. 34, 3336 (1995)CrossRefADSGoogle Scholar
  16. 16.
    D. Richter, US Patent #8,508,740 B2, 13 Aug 2013Google Scholar
  17. 17.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)CrossRefADSGoogle Scholar
  18. 18.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)CrossRefADSGoogle Scholar
  19. 19.
    P. Werle, R. Muecke, F. Slemr, Appl. Phys. B 57, 131 (1993)CrossRefADSGoogle Scholar
  20. 20.
    B.P. Wert, A. Fried, S. Rauenbuehler, J. Walega, B. Henry, J. Geophys. Res. 108, 4350 (2003)CrossRefGoogle Scholar
  21. 21.
    D.D. Parrish, T.B. Ryerson, J. Mellqvist, J. Johansson, A. Fried, D. Richter, J.G. Walega, R.A. Washenfelder, J.A. De Gouw, J. Peischl, Atmos. Chem. Phys. 12, 3273 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Donald H. Lenschow, Probing the Atmospheric Boundary Layer (American Meteorological Society, Boston, 1986), pp. 39–55Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dirk Richter
    • 1
  • Petter Weibring
    • 1
  • James G. Walega
    • 1
  • Alan Fried
    • 1
  • Scott M. Spuler
    • 2
  • Matthew S. Taubman
    • 3
  1. 1.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  2. 2.Earth Observing LaboratoryNational Center for Atmospheric ResearchBoulderUSA
  3. 3.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations