Advertisement

Applied Physics B

, Volume 119, Issue 4, pp 561–575 | Cite as

Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence

  • T. A. Sipkens
  • N. R. Singh
  • K. J. Daun
  • N. Bizmark
  • M. Ioannidis
Article

Abstract

While time-resolved laser-induced incandescence (TiRe-LII) shows promise as a diagnostic for sizing aerosolized iron nanoparticles, the spectroscopic and heat transfer models needed to interpret TiRe-LII measurements on iron nanoparticles remain uncertain. This paper focuses on three key aspects of the models: the thermal accommodation coefficient; the spectral absorption efficiency; and the evaporation sub-model. Based on a detailed literature review, spectroscopic and heat transfer models are defined and applied to analyze TiRe-LII measurements carried out on iron nanoparticles formed in water and then aerosolized into monatomic and polyatomic carrier gases. A comparative analysis of the results shows nanoparticle sizes that are consistent between carrier gases and thermal accommodation coefficients that follow the expected trends with bath gas molecular mass and structure.

Keywords

Nanoparticle Size Iron Nanoparticles Heat Transfer Model Molten Iron Nanoparticle Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the National Science and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation-Leaders Opportunity Fund (CFI-LOF), and the Waterloo Institute for Nanotechnology (WIN). Transmission electron microscopy was carried out using the facilities of the Canadian Centre for Electron Microscopy.

References

  1. 1.
    L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt. 23(13), 2201–2208 (1984)CrossRefADSGoogle Scholar
  2. 2.
    S. Schraml, S. Will, A. Leipertz, Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII). SAE Paper, no. 01-0146 (1999)Google Scholar
  3. 3.
    B.F. Kock, T. Eckhardt, P. Roth, In-cylinder sizing of diesel particles by time-resolved laser-induced incandescence (TR-LII). Proc. Combust. Inst. 29(2), 2775–2782 (2002)CrossRefGoogle Scholar
  4. 4.
    D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gulder, W.D. Bachalo, A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 44(31), 6773–6785 (2005)CrossRefADSGoogle Scholar
  5. 5.
    R.L. Vander Wal, T.M. Ticich, J.R. West, Laser-induced incandescence applied to metal nanostructures. Appl. Opt. 38(27), 5867–5879 (1999)CrossRefADSGoogle Scholar
  6. 6.
    A.V. Fillipov, M.W. Markus, P. Roth, In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination. J. Aerosol Sci. 30(1), 71–87 (1999)CrossRefGoogle Scholar
  7. 7.
    R. Starke, B. Kock, P. Roth, Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor. Shock Waves 12(5), 260–351 (2003)CrossRefGoogle Scholar
  8. 8.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Comparison of LII and TEM sizing during synthesis of iron particle chains. Proc. Combust. Inst. 30(1), 1689–1697 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Eremin, E. Gurentsov, C. Schulz, Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature. J. Phys. D Appl. Phys. 41(5), 1–5 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B 104(2), 289–295 (2011)CrossRefADSGoogle Scholar
  11. 11.
    A. Eremin, E. Gurentsov, E. Mikheyeva, K. Priemchenko, Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating. Appl. Phys. B 112(3), 421–432 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Y. Murakami, T. Sugatani, Y. Nosaka, Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium. J. Phys. Chem. A 109(40), 8994–9000 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence. J. Heat Transf. 135(5), 052401 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Reimann, H. Oltmann, S. Will, C. Bassano, E.L. Lösch, S. Günther, Laser Sintering of Nickel Aggregates Produced from Inert Gas Condensation. in Proceedings of the World Conference on Particle Technology, Nuremberg, Germany (2010)Google Scholar
  15. 15.
    T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures. Chemosphere 51, 1055–1061 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Maffi, F. Cignoli, C. Bellomunno, S. De luliis, G. Zizak, Spectral effects in laser induced incandescence application to flame-made titania nanoparticles. Spectrochim. Acta B 63(2), 202–209 (2009)CrossRefADSGoogle Scholar
  17. 17.
    F. Cignoli, C. Bellomunno, S. Maffi, G. Zizak, Laser-induced incandescence of titania nanoparticles synthesized in a flame. Appl. Phys. B 96(4), 593–599 (2008)CrossRefADSGoogle Scholar
  18. 18.
    B. Tribalet, A. Faccinetto, T. Dreier, C. Schultz, Evaluation of particle sizes of iron-oxide nano-particles in a low-pressure flame-synthesis reactor by simultaneous application of TiRe-LII and PMS. in 5th Workshop on Laser-Induced Incandescence, Le Touquet, France (2012)Google Scholar
  19. 19.
    I.S. Altman, D. Lee, J.D. Chung, J. Song, M. Choi, Light of absorption of silica nanoparticles. Phys. Rev. B 63(16), 161402 (2001)CrossRefADSGoogle Scholar
  20. 20.
    T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, In situ particle sizing of silicon nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 116(3), 623–636 (2014)CrossRefADSGoogle Scholar
  21. 21.
    S. Krishnan, K.J. Yugawa, P.C. Nordine, Optical properties of liquid nickel and iron. Phys. Rev. B 55(13), 8201–8206 (1997)CrossRefADSGoogle Scholar
  22. 22.
    J.C. Miller, Optical properties of liquid metals at high temperatures. Philos. Mag. 20(168), 1115–1132 (1969)CrossRefADSGoogle Scholar
  23. 23.
    K.M. Shvarev, V.S. Gushchin, B. Baum, The effect of temperature on optical constants of iron. High Temp. 16(3), 441–446 (1978)Google Scholar
  24. 24.
    K.K. Nanda, F.E. Kruis, H. Fissan, Evaporation of free PbS nanoparticles: evidence of the Kelvin effect. Phys. Rev. Lett. 89(25), 256103 (2002)CrossRefADSGoogle Scholar
  25. 25.
    K. Daun, B. Stagg, F. Liu, G. Smallwood, D. Snelling, Determining aerosol particle size distributions using time-resolved laser-induced incandescence. Appl. Phys. B 87(2), 363–372 (2007)CrossRefADSGoogle Scholar
  26. 26.
    T.C. Bond, R.W. Bergstrom, Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40, 27–67 (2006)CrossRefGoogle Scholar
  27. 27.
    M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, San Diego, 2013)Google Scholar
  28. 28.
    J.A. Creighton, D.G. Eadon, Ultraviolet–Visible absorption spectra of the colloidal metallic elements. J. Chem. Soc., Faraday Trans. 87, 3881–3891 (1991)CrossRefGoogle Scholar
  29. 29.
    M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley, New York, 2011)CrossRefGoogle Scholar
  30. 30.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  31. 31.
    M.P. Marder, Condensed Matter Physics, 2nd edn. (Wiley, New York, 2010)CrossRefGoogle Scholar
  32. 32.
    Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Scholl, G.V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39(5), 1338–1345 (2005)CrossRefADSGoogle Scholar
  33. 33.
    F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxyl cellulose stabilizers. Environ. Sci. Technol. 41(17), 6216–6221 (2007)CrossRefADSGoogle Scholar
  34. 34.
    M. W. Chase, NIST-JANAF Thermochemical Tables, 4th edn. American Institute of Physics (1998)Google Scholar
  35. 35.
    H. Kobatake, H. Khosroabadi, H. Fukuyama, Normal spectral emissivity measurement of liquid iron and nickel using electromagnetic levitation in direct current magnetic field. Metall. Mater. Trans. A 43A, 2466–2472 (2012)CrossRefADSGoogle Scholar
  36. 36.
    K.J. Daun, T.A. Sipkens, J.T. Titantah, M. Karttunen, Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases. Appl. Phys. B 112(3), 409–420 (2013)Google Scholar
  37. 37.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Heat conduction from a spherical nanoparticle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006)CrossRefADSGoogle Scholar
  38. 38.
    K.J. Daun, Thermal accommodation coefficients between polyatomic gas molecules and soot in laser-induced incandescence experiments. Int. J. Heat Mass Transf. 52, 5081–5089 (2009)CrossRefMATHGoogle Scholar
  39. 39.
    K.J. Daun, G.J. Smallwood, F. Liu, Investigation of thermal accommodation coefficients in time-resolved laser-induced incandescence. J. Heat Trans. 130(12), 121201 (2008)CrossRefGoogle Scholar
  40. 40.
    K.J. Daun, G.J. Smallwood, F. Liu, Molecular dynamics simulations of translational thermal accommodation coefficients for time-resolved LII. Appl. Phys. B 94(1), 39–49 (2009)CrossRefADSGoogle Scholar
  41. 41.
    K.J. Daun, J.T. Titantah, M. Karttunen, Molecular dynamics simulation of thermal accommodation coefficients for laser-induced incandescence sizing of nickel particles. Appl. Phys. B 107(1), 221–228 (2012)CrossRefADSGoogle Scholar
  42. 42.
    K.M. Watson, Thermodynamics of the liquid state. Ind. Eng. Chem. 35(4), 398–406 (1943)CrossRefGoogle Scholar
  43. 43.
    D.A. Young, B.J. Alder, Critical point of metals from the van der Waals model. Phys. Rev. A 3(1), 364–371 (1971)CrossRefADSGoogle Scholar
  44. 44.
    D. Lide (ed.), CRC Handbook of Chemistry and Physics, 95th ed., (CRC Press, Boca Raton, 2014–2015)Google Scholar
  45. 45.
    W. Forsythe, Smithsonian Physical Tables, 9th ed., Knovel (2003)Google Scholar
  46. 46.
    P.D. Desai, Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15(3), 967–983 (1986)CrossRefADSGoogle Scholar
  47. 47.
    S.A. Kuhlmann, J. Reimann, S. Will, On heat conduction between laser-heated nanoparticles and a surrounding gas. J. Aerosol Sci. 37(12), 1696–1716 (2006)CrossRefGoogle Scholar
  48. 48.
    B.J. Keene, Review of data for the surface tension of iron and its binary alloys. Int. Mater. Rev. 33(1), 1–37 (1988)CrossRefGoogle Scholar
  49. 49.
    R.C. Tolman, The effect of droplet size on surface tension. J. Chem. Phys. 17(3), 333–337 (1949)CrossRefADSGoogle Scholar
  50. 50.
    K. Koga, X.C. Zeng, A.K. Shchekin, Validity of Tolman’s equation: how large should a droplet be? J. Chem. Phys. 109(10), 4063–4070 (1998)CrossRefADSGoogle Scholar
  51. 51.
    T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi, F. Abe, Theoretical investigation of L10-disorder phase equilibria in Fe–Pd alloy system. J. Alloys Compd. 317, 13–18 (2001)CrossRefGoogle Scholar
  52. 52.
    Y.A. Lei, T. Bykov, S. Yoo, X.C. Zeng, The Tolman length: is it positive or negative? J. Am. Chem. Soc. 127(44), 15346–15347 (2005)CrossRefGoogle Scholar
  53. 53.
    H.M. Lu, Q. Jiang, Size-dependent surface tension and Tolman’s length of droplets. Langmuir 21(2), 779–781 (2005)CrossRefGoogle Scholar
  54. 54.
    A.R. Nair, S.P. Sathian, Studies on the effect of curvature on the surface properties of nanodrops. J. Mol. Liq. 195, 248–254 (2014)CrossRefGoogle Scholar
  55. 55.
    J.H. Shin, M.R. Deinert, A model for the latent heat of melting in free standing metal nanoparticles. J. Chem. Phys. 140(16), 164707 (2014)CrossRefADSGoogle Scholar
  56. 56.
    A. Alqudami, S. Annapoorni, Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2, 5–13 (2007)CrossRefGoogle Scholar
  57. 57.
    R.L. Vander Wal, Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Appl. Phys. B 96(4), 601–611 (2009)CrossRefADSGoogle Scholar
  58. 58.
    T. Phenrat, H.J. Kim, F. Fagerlund, T. Illangasekare, R.D. Tilton, G.V. Lowry, Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ. Sci. Technol. 43(15), 5079–5085 (2009)CrossRefADSGoogle Scholar
  59. 59.
    B.M. Crosland, M.R. Johnson, K.A. Thomson, Analysis of uncertainties in instantaneous soot volume fraction measurements using two-dimensional, auto-compensating, laser-induced incandescence (2D-AC-LII). Appl. Phys. B 102, 173–183 (2011)CrossRefADSGoogle Scholar
  60. 60.
    J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer, Berlin, 2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. A. Sipkens
    • 1
  • N. R. Singh
    • 1
  • K. J. Daun
    • 1
  • N. Bizmark
    • 2
  • M. Ioannidis
    • 2
  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations