Applied Physics B

, Volume 118, Issue 3, pp 489–495 | Cite as

Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths

  • M. Covi
  • B. Pressl
  • T. Günthner
  • K. LaihoEmail author
  • S. Krapick
  • C. Silberhorn
  • G. Weihs


The measurement of light characteristics at the single- and few photon level plays a key role in many quantum optics applications. Often photodetection is preceded with the transmission of quantum light over long distances in optical fibers with their low loss window near 1550 nm. Nonetheless, the detection of the photonic states at telecommunication wavelengths via avalanche photodetectors has long been facing severe restrictions. Only recently, demonstrations of the first free-running detector techniques in the telecommunication band have lifted the demand of synchronizing the signal with the detector. Moreover, moderate cooling is required to gain single-photon sensitivity with these detectors. Here, we implement a liquid-nitrogen cooled negative-feedback avalanche diode (NFAD) at telecommunication wavelengths and investigate the properties of this highly flexible, free-running single-photon sensitive detector. Our realization of cooling provides a large range of stable operating temperatures and has advantages over the relatively bulky commercial refrigerators that have been used before. We determine the region of NFAD working parameters most suitable for single-photon sensitive detection enabling a direct plug-in of our detector to a true photon-counting task.


Noise Equivalent Power Dark Count Telecommunication Wavelength Dark Count Rate Relative Spectral Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Henning Weier (qutools) the support with discriminator boards required for operating our NFADs. Additionally, we thank Armin Sailer and Gerhard Hendl for helping with the mechanical and electrical construction of the detector and Raimund Ricken for the assistance with the waveguide fabrication. This work was supported in part by the European Research Council (ERC) through project EnSeNa (257531) and the Austrian Science Fund (FWF) through project no. I-2065-N27.


  1. 1.
    M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011)CrossRefADSGoogle Scholar
  2. 2.
    B.E. Kardynal, Z.L. Yuan, A.J. Shields, Nat. Photon. 2, 425 (2008)CrossRefGoogle Scholar
  3. 3.
    A.E. Lita, A.J. Miller, S.-W. Nam, Opt. Express 16, 3032 (2008)CrossRefADSGoogle Scholar
  4. 4.
    T. Gerrits, S. Glancy, T.S. Clement, B. Calkins, A.E. Lita, A.J. Miller, A.L. Migdall, S.W. Nam, R.P. Mirin, E. Knill, Phys. Rev. A 82, 031802(R) (2010)CrossRefADSGoogle Scholar
  5. 5.
    E. Waks, E. Diamanti, B.C. Sanders, S.D. Bartlett, Y. Yamamoto, Phys. Rev. Lett. 92, 113602 (2004)CrossRefADSGoogle Scholar
  6. 6.
    C.K. Hong, L. Mandel, Phys. Rev. Lett. 56, 58 (1986)CrossRefADSGoogle Scholar
  7. 7.
    M. Bondani, A. Allevi, A. Andreoni, Opt. Lett. 34, 1444 (2009)CrossRefADSGoogle Scholar
  8. 8.
    C. Silberhorn, Contemp. Phys. 48, 143 (2007)CrossRefADSGoogle Scholar
  9. 9.
    G.S. Buller, R.J. Collins, Meas. Sci. Technol. 21, 012002 (2010)CrossRefADSGoogle Scholar
  10. 10.
    R.H. Hadfield, Nat. Photon. 3, 696 (2009)CrossRefADSGoogle Scholar
  11. 11.
    D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I.A. Wamsley, Opt. Lett. 28, 2387 (2003)CrossRefADSGoogle Scholar
  12. 12.
    M.J. Fitch, B.C. Jacobs, T.B. Pittman, J.D. Franson, Phys. Rev. A 68, 043814 (2003)CrossRefADSGoogle Scholar
  13. 13.
    R.T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, A. Rochas, Appl. Phys. Lett. 91, 201114 (2007)CrossRefADSGoogle Scholar
  14. 14.
    R.E. Warburton, M. Itzler, G.S. Buller, Appl. Phys. Lett. 94, 071116 (2009)CrossRefADSGoogle Scholar
  15. 15.
    R. Warburton, M. Itzler, G. Buller, Eletron. Lett. 45, 996 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Yan, D.R. Hamel, A.K. Heinrichs, X. Jiang, M.A. Itzler, T. Jennewein, Rev. Sci. Instrum. 83, 073105 (2012)CrossRefADSGoogle Scholar
  17. 17.
    B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, Appl. Phys. Lett. 104, 081108 (2014)CrossRefADSGoogle Scholar
  18. 18.
    S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35, 1956 (1996)CrossRefADSGoogle Scholar
  19. 19.
    T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M.A. Itzler, H. Zbinden, J. Mod. Opt. 59, 1481 (2012)CrossRefADSGoogle Scholar
  20. 20.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)CrossRefADSGoogle Scholar
  21. 21.
    P.L. Voss, K.G. Köprülü, S.-K. Choi, S. Dugan, P. Kumar, J. Mod. Opt. 51, 1369 (2004)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Covi
    • 1
  • B. Pressl
    • 1
  • T. Günthner
    • 1
  • K. Laiho
    • 1
    Email author
  • S. Krapick
    • 3
  • C. Silberhorn
    • 3
  • G. Weihs
    • 1
    • 2
  1. 1.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria
  2. 2.Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  3. 3.Applied PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations