Applied Physics B

, Volume 118, Issue 4, pp 517–525 | Cite as

Spectroscopy and laser cooling on the \({}^{1}S_{0}\)\(\,^{3}P_{1}\) line in Yb via an injection-locked diode laser at 1,111.6 nm

Injection locking for the yellow–green spectrum
  • N. Kostylev
  • C. R. Locke
  • M. E. Tobar
  • J. J. McFerran


We generate 555.8-nm light with sub-MHz linewidth through the use of laser injection locking of a semiconductor diode at 1,111.6 nm, followed by frequency doubling in a resonant cavity. The integrity of the injection lock is investigated by studying an offset beat signal between slave and master lasers, by performing spectroscopy on the \((6s)^{2}\, {}^{1}S_{0}\hbox{--}(6s6p)\,{}^{3}P_{1}\) transition in magneto-optically trapped ytterbium, and by demonstrating additional laser cooling of \({}^{171}\hbox {Yb}\) with the 555.8-nm light in a dual-wavelength magneto-optical trap (MOT). For the \({}^{1}S_{0}\)\(\,^{3}P_{1}\) spectroscopy, we confirm the linear dependence between ground-state linewidth and the intensity of an off-resonant laser, namely that used to cool Yb atoms in a \({}^{1}S_{0}\)\(\,^{1}P_{1}\) magneto-optical trap. A temperature of 60 μK is produced for \({}^{171}\hbox {Yb}\) in the dual-wavelength MOT. Our results demonstrate the suitability of injection-locked 1,100–1,130-nm laser diodes as a source for sub-MHz linewidth radiation in the yellow–green spectrum.


Fiber Laser Laser Cool Frequency Detuning Beat Signal Slave Laser 



This work was supported by the Australian Research Council (LE110100054). J.M. is supported through an ARC Future Fellowship (FT110100392) and N.K. through a Prescott Postgraduate Scholarship, UWA. We are gracious to Gary Light and Steve Osborne of the UWA Physics workshop for their technical expertise. We thank members of the ARC Centre of Excellence for Engineered Quantum Systems for their assistance, and S. Parker and E. Ivanov for the use of equipment.


  1. 1.
    F.-L. Hong, J. Ishikawa, K. Sugiyama, A. Onae, H. Matsumoto, J. Ye, J. Hall, Comparison of independent optical frequency measurements using a portable iodine-stabilized Nd:YAG laser. IEEE Trans. Instrum. Meas. 52, 240–244 (2003)CrossRefGoogle Scholar
  2. 2.
    H.-C. Chui, S.-Y. Shaw, M.-S. Ko, Y.-W. Liu, J.-T. Shy, T. Lin, W.-Y. Cheng, R. Roussev, M. Fejer, Iodine stabilization of a diode laser in the optical communication band. Opt. Lett. 30, 646 (2005)CrossRefADSGoogle Scholar
  3. 3.
    A. Yamaguchi, S. Uetake, Y. Takahashi, A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms. Appl. Phys. B 91, 57–60 (2008)CrossRefADSGoogle Scholar
  4. 4.
    H. Matsuura, T. Takagi, Development of a low-noise yellow–green laser using a Yb-doped double-clad fiber laser and a periodically poled \(\text{ LiNbO}_{3}\) waveguide crystal. Jpn. J. Appl. Phys. 50, 032701 (2011)CrossRefADSGoogle Scholar
  5. 5.
    N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, An atomic clock with \(10^{-18}\) instability. Science 341, 1215–1218 (2013)CrossRefADSGoogle Scholar
  6. 6.
    N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Spin-½optical lattice clock. Phys. Rev. Lett. 103, 063001 (2009)CrossRefADSGoogle Scholar
  7. 7.
    M. Yasuda, H. Inaba, T. Kohnot, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, F.-L. Hong, Improved absolute frequency measurement of the \({}^{171}\)Yb optical lattice clock towards a candidate for the redefinition of the second. Appl. Phys. Express 5, 102401 (2012)CrossRefADSGoogle Scholar
  8. 8.
    C.Y. Park, D.-H. Yu, W.-K. Lee, S.E. Park, E.B. Kim, S.K. Lee, J.W. Cho, T.H. Yoon, J. Mun, S.J. Park, T.Y. Kwon, S.-B. Lee, Absolute frequency measurement of \({}^{1}S_{0} ( \text{ F } = 1/2)-^{3}P_{0} ( \text{ F } = 1/2)\) transition of 171 Yb atoms in a one-dimensional optical lattice at KRISS. Metrologia 50, 119 (2013)CrossRefADSGoogle Scholar
  9. 9.
    M. Pizzocaro, G. Costanzo, A. Godone, F. Levi, A. Mura, M. Zoppi, D. Calonico, Realization of an ultrastable 578-nm laser for an Yb lattice clock. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 426–31 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Ning, Z. Min, C. Hai-Qin, F. Su, H. Liang-Yu, Z. Xiao-Hang, G. Qi, J. Yan-Yi, B. Zhi-Yi, M. Long-Sheng, X. Xin-Ye, Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice. Chin. Phys. B 22, 090601 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Loftus, J. Bochinski, T. Mossberg, Simultaneous multi-isotope trapping of ytterbium. Phys. Rev. A 63, 053401–1 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, Y. Takahashi, Spin-singlet Bose–Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003)CrossRefADSGoogle Scholar
  13. 13.
    T. Fukuhara, S. Sugawa, Y. Takahashi, Bose–Einstein condensation of an ytterbium isotope. Phys. Rev. A 76, 0516041 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Okano, H. Hara, M. Muramatsu, K. Doi, S. Uetake, Y. Takasu, Y. Takahashi, Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules. Appl. Phys. B 98, 691–6 (2010)CrossRefADSGoogle Scholar
  15. 15.
    F. Munchow, C. Bruni, M. Madalinski, A. Gorlitz, Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys. Chem. Chem. Phys. 13, 18734–7 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Borkowski, P. Zuchowski, R. Ciurylo, P. Julienne, D. Kedziera, L. Mentel, P. Tecmer, F. Munchow, C. Bruni, A. Gorlitz, Scattering lengths in isotopologues of the RbYb system. Phys. Rev. A 88, 052708 (2013)CrossRefADSGoogle Scholar
  17. 17.
    M. Borkowski, R. Ciurylo, P. Julienne, R. Yamazaki, H. Hara, K. Enomoto, S. Taie, S. Sugawa, Y. Takasu, Y. Takahashi, Photoassociative production of ultracold heteronuclear ytterbium molecules. Phys. Rev. A 84, 030702 (2011)CrossRefADSGoogle Scholar
  18. 18.
    Y. Takasu, Y. Takahashi, Quantum degenerate gases of ytterbium atoms. J. Phys. Soc. Jpn. 78, 012001 (2009) (11 pp.)CrossRefADSGoogle Scholar
  19. 19.
    H. Hara, Y. Takasu, Y. Yamaoka, J. Doyle, Y. Takahashi, Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys. Rev. Lett. 106, 205304 (2011)CrossRefADSGoogle Scholar
  20. 20.
    A. Hansen, A. Khramov, W. Dowd, A. Jamison, B. Plotkin-Swing, R. Roy, S. Gupta, Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap. Phys. Rev. A 87, 013615 (2013). (8 pp.)CrossRefADSGoogle Scholar
  21. 21.
    S. Dorscher, A. Thobe, B. Hundt, A. Kochanke, R. Le Targat, P. Windpassinger, C. Becker, K. Sengstock, Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. Rev. Sci. Instrum. 84, 043109 (2013)CrossRefADSGoogle Scholar
  22. 22.
    S. Taie, R. Yamazaki, S. Sugawa, Y. Takahashi, An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys. 8, 825 (2012)CrossRefGoogle Scholar
  23. 23.
    G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schafer, H. Hui Hu, L. Xia-Ji, J. Catani, C. Sias, M. Inguscio, L. Fallani, A one-dimensional liquid of fermions with tunable spin. Nat. Phys. 10, 198 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Scazza, C. Hofrichter, M. Hoefer, P.C. De Groot, I. Bloch, S. Foelling, Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys. 10, 779 (2014)CrossRefGoogle Scholar
  25. 25.
    F. Gerbier, J. Dalibard, Gauge fields for ultracold atoms in optical superlattices. New J. Phys. 12, 033007 (2010)CrossRefADSGoogle Scholar
  26. 26.
    H. Nonne, M. Moliner, S. Capponi, P. Lecheminant, K. Totsuka, Symmetry-protected topological phases of alkaline-earth cold fermionic atoms in one dimension. Europhys. Lett. 102, 37008 (2013)CrossRefADSGoogle Scholar
  27. 27.
    Y. Takasu, Y. Saito, Y. Takahashi, M. Borkowski, R. Ciurylo, P. Julienne, Controlled production of subradiant states of a diatomic molecule in an optical lattice. Phys. Rev. Lett. 108, 173002 (2012)CrossRefADSGoogle Scholar
  28. 28.
    V. Natarajan, Proposed search for an electric-dipole moment using laser-cooled \({}^{171}\)Yb atoms. Eur. Phys. J. D 32, 33–8 (2005)CrossRefADSGoogle Scholar
  29. 29.
    M. Tarbutt, B. Sauer, J. Hudson, E. Hinds, Design for a fountain of YbF molecules to measure the electron’s electric dipole moment. New J. Phys. 15, 053034 (2013)CrossRefADSGoogle Scholar
  30. 30.
    F. Deuretzbacher, D. Becker, J. Bjerlin, S. Reimann, L. Santos, Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Phys. Rev. A 90, 013611 (2014)CrossRefADSGoogle Scholar
  31. 31.
    N. Chiodo, F. Du Burck, J. Hrabina, Y. Candela, J.-P. Wallerand, O. Acef, CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals. Opt. Commun. 311, 239–44 (2013)CrossRefADSGoogle Scholar
  32. 32.
    O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, M. De Micheli, Highly confining proton exchanged waveguides on Z-Cut LiNbO3 with preserved nonlinear coefficient. IEEE Photonics Technol. Lett. 26, 1557–60 (2014)CrossRefADSGoogle Scholar
  33. 33.
    E.B. Kim, W.-K. Lee, C.Y. Park, D.-H. Yu, S.E. Park, Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser. Opt. Express 18, 10308–14 (2010)CrossRefADSGoogle Scholar
  34. 34.
    M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, F.-L. Hong, Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium. J. Opt. Soc. Am. B 27, 1388–93 (2010)CrossRefADSGoogle Scholar
  35. 35.
    S. Sinha, C. Langrock, M. Digonnet, M. Fejer, R. Byer, Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator. Opt. Lett. 31, 347–9 (2006)CrossRefADSGoogle Scholar
  36. 36.
    A. Bouchier, G. Lucas-Leclin, P. Georges, J. Maillard, Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide. Opt. Express 13, 6974–6979 (2005)CrossRefADSGoogle Scholar
  37. 37.
    S. Kobayashi, T. Kimura, Injection locking in AlGaAs semiconductor laser. IEEE J. Quantum Electron. 17, 681–689 (1981)CrossRefADSGoogle Scholar
  38. 38.
    N. Kostylev, E. Ivanov, M. Tobar, J.J. McFerran, Sub-Doppler cooling of ytterbium with the \({}^{1}S_{0}\)\(\,^{1}P_{1}\) transition including \({}^{171}\text{ Yb } (\text{ I }=1/2)\). J. Opt. Soc. Am. B 31, 1614 (2014)CrossRefADSGoogle Scholar
  39. 39.
    M. Cristiani, T. Valenzuela, H. Gothe, J. Eschner, Fast nondestructive temperature measurement of two-electron atoms in a magneto-optical trap. Phys. Rev. A. 81, 063416 (2010)CrossRefADSGoogle Scholar
  40. 40.
    T. Loftus, J.R. Bochinski, T.W. Mossberg, Probing magneto-optic trap dynamics through weak excitation of a coupled narrow-linewidth transition. Phys. Rev. A 61, 061401 (2000)CrossRefADSGoogle Scholar
  41. 41.
    A. Slepkov, A. Bhagwat, V. Venkataraman, P. Londero, A. Gaeta, Spectroscopy of Rb atoms in hollow-core fibers. Phys. Rev. A 81, 053825 (2010)CrossRefADSGoogle Scholar
  42. 42.
    A. Akulshin, V. Sautenkov, V. Velichansky, A. Zibrov, M. Zverkov, Power broadening of saturation absorption resonance on the D2 line of rubidium. Opt. Commun. 77, 295–8 (1990)CrossRefADSGoogle Scholar
  43. 43.
    C.N. Cohen-Tannoudji, Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998)CrossRefADSGoogle Scholar
  44. 44.
    H. Telle, Stabilization and modulation schemes of laser diodes for applied spectroscopy. Spectrochim. Acta Rev. 15, 301–327 (1993)Google Scholar
  45. 45.
    S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium. Appl. Phys. B 92, 33 (2008)CrossRefADSGoogle Scholar
  46. 46.
    W. Kozlovsky, C. Nabors, R. Byer, Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities. IEEE J. Quantum Electron. 24, 913–19 (1988)CrossRefADSGoogle Scholar
  47. 47.
    R. Le Targat, J. Zondy, P. Lemonde, 75%-Efficiency blue generation from an intracavity PPKTP frequency doubler. Opt. Commun. 247, 471–81 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. Kostylev
    • 1
  • C. R. Locke
    • 1
  • M. E. Tobar
    • 1
  • J. J. McFerran
    • 1
  1. 1.School of PhysicsUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations