Advertisement

Applied Physics B

, Volume 119, Issue 4, pp 745–763 | Cite as

Sensitivity analysis for soot particle size imaging with laser-induced incandescence at high pressure

  • E. Cenker
  • G. Bruneaux
  • T. Dreier
  • C. Schulz
Article

Abstract

Soot particle sizes can be determined from time-resolved laser-induced incandescence (LII) in point measurements where full signal traces are detected. For instantaneous imaging, strategies are required that must cope with time-gated information and that rely on assumptions on the local boundary conditions. A model-based analysis is performed to identify the dependence of LII particle-size imaging on the assumed boundary conditions such as bath gas temperature, pressure, particle heat-up temperature, accommodation coefficients, and soot aggregate size. Various laser-fluence regimes and gas pressures are considered. For 60 bar, fluences that lead to particle heat-up temperatures of 3,400–3,900 K provided the lowest sensitivity on particle sizing. Effects of laser attenuation are evaluated. A combination of one detection gate starting at the signal peak and the other starting with 5 ns delay was found to provide the highest sensitivity at 60 bar. The optimum gate delays for different pressures are shown. The effects of timing jitter, polydispersity, and signal noise are investigated. Systematic errors in pyrometry imaging at 60 bar is evaluated.

Keywords

Soot Particle Signal Ratio Soot Volume Fraction Gate Width Thermal Accommodation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank for Hubert Baya Toda at IFPEN for his help in analytical calculations of gating strategies. Thomas Dreier and Christof Schulz acknowledge support from the German Science Foundation, DFG, through SCHU1369/3.

References

  1. 1.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333–354 (2006)CrossRefADSGoogle Scholar
  2. 2.
    E. Cenker, G. Bruneaux, L.M. Pickett, C. Schulz, SAE Int. J. Engines 6, 352–365 (2013)CrossRefGoogle Scholar
  3. 3.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503–521 (2007)CrossRefADSGoogle Scholar
  4. 4.
    R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156, 120–129 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403–411 (2006)CrossRefADSGoogle Scholar
  6. 6.
    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629–639 (2007)CrossRefADSGoogle Scholar
  7. 7.
    S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277–2284 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342–2344 (1995)CrossRefADSGoogle Scholar
  9. 9.
    S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647–5658 (1998)CrossRefADSGoogle Scholar
  10. 10.
    B.C. Connelly, Quantitative Characterization of Steady and Time-Varying, Sooting, Laminar Diffusion Flames Using Optical Techniques, Ph.D. thesis, Yale University, 2009Google Scholar
  11. 11.
    M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B 104, 427–438 (2011)CrossRefADSGoogle Scholar
  12. 12.
    M. Leschowski, T. Dreier, C. Schulz, Z. Phys. Chem., in press (2015)Google Scholar
  13. 13.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777–788 (2006)CrossRefGoogle Scholar
  14. 14.
    L.M. Pickett, D.L. Siebers, Int. J. Engine Res. 7, 103–130 (2006)CrossRefGoogle Scholar
  15. 15.
    L. Francqueville, G. Bruneaux, B. Thirouard, SAE Int. J. Fuels 3, 163–182 (2010)Google Scholar
  16. 16.
    B. Menkiel, A. Donkerbroek, R. Uitz, R. Cracknell, L. Ganippa, Combust. Flame 159, 2985–2998 (2012)CrossRefGoogle Scholar
  17. 17.
    B.M. Crosland, M.R. Johnson, K.A. Thomson, Appl. Phys. B 102, 173–183 (2011)CrossRefADSGoogle Scholar
  18. 18.
    L.A. Melton, Appl. Opt. 23, 2201–2208 (1984)CrossRefADSGoogle Scholar
  19. 19.
    T. Yamaguchi, K. Kondo, H. Nishigai, S. Takano, T. Aizawa, SAE Int. J. Fuels Lubr. 5, 316–328 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Witkowski, K. Kondo, G. Vishwanathan, D. Rothamer, Combust. Flame 160, 1129–1141 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383–395 (2006)CrossRefADSGoogle Scholar
  22. 22.
    M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052–2062 (2003)CrossRefADSGoogle Scholar
  23. 23.
    J. Johnsson, H. Bladh, P.-E. Bengtsson, Appl. Phys. B 99, 817–823 (2010)CrossRefADSGoogle Scholar
  24. 24.
    N.A. Fuchs, Geofis. Pura E Appl. 56, 185–193 (1963)CrossRefADSGoogle Scholar
  25. 25.
    S. Kook, R. Zhang, K. Szeto, L.M. Pickett, T. Aizawa, SAE Int. J. Fuels Lubr. 6, 80–97 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Kondo, T. Aizawa, S. Kook, L.M. Pickett, SAE Tech. Pap. (2013) 2013-01-0908Google Scholar
  27. 27.
    T. Aizawa, H. Nishigai, K. Kondo, T. Yamaguchi, J.-G. Nerva, C. Genzale, S. Kook, L.M. Pickett, SAE Int. J. Fuels Lubr. 5, 665–673 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709–717 (1997)CrossRefADSGoogle Scholar
  29. 29.
    B.B. Collier, M.J. McShane, Anal. Chem. 84, 4725–4731 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, J. Bood, Opt. Express 20, 3043–3056 (2012)CrossRefADSGoogle Scholar
  31. 31.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79–92 (2006)CrossRefGoogle Scholar
  32. 32.
    H.A. Michelsen, Appl. Phys. B 94, 103–117 (2008)CrossRefADSGoogle Scholar
  33. 33.
    H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645–656 (2009)CrossRefADSGoogle Scholar
  34. 34.
    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43–64 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Leschowski, K.A. Thomson, D.R. Snelling, C. Schulz, G.J. Smallwood, Appl. Phys. B, in review (2015)Google Scholar
  36. 36.
    S. Kook, L.M. Pickett, Proc. Combust. Inst. 33, 2911–2918 (2011)CrossRefGoogle Scholar
  37. 37.
    R.P. Bambha, M.A. Dansson, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 112, 343–358 (2013)CrossRefADSGoogle Scholar
  38. 38.
    R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156, 120–129 (2009)CrossRefGoogle Scholar
  39. 39.
    H.A. Michelsen, Appl. Phys. B 83, 443–448 (2006)CrossRefADSGoogle Scholar
  40. 40.
    S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81–93 (2012)CrossRefADSGoogle Scholar
  41. 41.
    M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485–491 (1998)CrossRefGoogle Scholar
  42. 42.
    M.P.B. Musculus, L.M. Pickett, Combust. Flame 141, 371–391 (2005)CrossRefGoogle Scholar
  43. 43.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 96, 613–621 (2009)CrossRefADSGoogle Scholar
  44. 44.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B (2014). doi: 10.1007/s00340-014-5966-z
  45. 45.
    E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa, C. Schulz, Appl. Phys. B, in review (2015)Google Scholar
  46. 46.
    M.A. Dansson, M. Boisselle, M.A. Linne, H.A. Michelsen, Appl. Opt. 46, 8095–8103 (2007)CrossRefADSGoogle Scholar
  47. 47.
    K.J. Daun, B.J. Stagg, F. Liu, G.J. Smallwood, D.R. Snelling, Appl. Phys. B 87, 363–372 (2007)CrossRefADSGoogle Scholar
  48. 48.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180–190 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. Cenker
    • 1
    • 2
    • 3
  • G. Bruneaux
    • 1
    • 2
  • T. Dreier
    • 3
  • C. Schulz
    • 3
  1. 1.IFP Energies Nouvelles, Institut Carnot IFPEN Transports EnergieRueil-MalmaisonFrance
  2. 2.École Centrale ParisChatenay-MalabryFrance
  3. 3.Institute for Combustion and Gas Dynamics – Reactive Fluids (IVG) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburgGermany

Personalised recommendations