Applied Physics B

, Volume 118, Issue 3, pp 431–437 | Cite as

Characterization of frequency entanglement under extended phase-matching conditions

  • Runai Quan
  • Mengmeng Wang
  • Feiyan Hou
  • Zhaoyang Tai
  • Tao Liu
  • Shougang Zhang
  • Ruifang Dong


Frequency-entangled photon pairs generated by spontaneous parametric down-conversion process under extended phase-matching conditions are found to be prospective resources for quantum information technology. The spectral indistinguishability and the degree of frequency entanglement of the down-converted photon pairs are two key features determining their potential applications. In this paper, both figures of merits are investigated. It is shown that the broadening of the pulsed pump bandwidth, the chirping of the pulse duration, and the lengthening of the nonlinear crystal all degrade the spectral indistinguishability. Furthermore, by changing the above conditions, it is possible to transfer the entanglement type from frequency-correlated to frequency-anticorrelated. For frequency-correlated entanglement, the degree of entanglement grows linearly with the pump bandwidth and the nonlinear crystal length, and quadratically with the chirp parameter of the pulse, while for anticorrelated frequency entanglement, the degree of frequency entanglement turns to behave with an inverse dependence on the above parameters. Guided by such investigations, the generation of desired frequency-entangled source for various quantum information applications can be optimized.


Pulse Pump Photon Pair Crystal Length Entangle Photon Pair Converted Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11174282, 91336108, 61127901), the Youth Talent Support Plan of the Organization Department of China, the Key Fund for the “Western light” Talent Cultivation Plan of the CAS, China, and the “Cross and Cooperative” Science and Technology Innovation Team Project of the CAS, China.


  1. 1.
    D.N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988)Google Scholar
  2. 2.
    A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999)CrossRefGoogle Scholar
  3. 3.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Y.H. Kim, S.P. Kulik, Y.H. Shih, Phys. Rev. Lett. 86, 1370–1373 (2001)CrossRefADSGoogle Scholar
  5. 5.
    J. Yang, X. Bao, H. Zhang, S. Chen, C.Z. Peng, Z.B. Chen, J.W. Pan, Phys. Rev. A 80, 042321 (2009)CrossRefADSGoogle Scholar
  6. 6.
    X.S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Nature 489, 269 (2012)CrossRefADSGoogle Scholar
  7. 7.
    A.V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B.E.A. Saleh, M.C. Teich, Phys. Rev. A 60, R2622 (1999)CrossRefADSGoogle Scholar
  8. 8.
    J. Mower, Z. Zhang, P. Desjardins, C. Lee, J.H. Shapiro, D. Englund, Phys. Rev. A 87, 062322 (2013)CrossRefADSGoogle Scholar
  9. 9.
    P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Nature 434, 169 (2005)CrossRefADSGoogle Scholar
  10. 10.
    D.S. Tasca, R.M. Gomes, F. Toscano, P.H. Souto Ribeiro, S.P. Walborn, Phys. Rev. A 83, 052325 (2011)CrossRefADSGoogle Scholar
  11. 11.
    H.H. Arnaut, G.A. Barbosa, Phys. Rev. Lett. 85, 286 (2000)CrossRefADSGoogle Scholar
  12. 12.
    W.P. Grice, I.A. Walmsley, Phys. Rev. A 56, 1627 (1997)CrossRefADSGoogle Scholar
  13. 13.
    Y.H. Kim, W.P. Grice, Opt. Lett. 30, 908 (2005)CrossRefADSGoogle Scholar
  14. 14.
    V. Giovannetti, L. Maccone, J.H. Shapiro, F.N.C. Wong, Phys. Rev. A 66, 043813 (2002)CrossRefADSGoogle Scholar
  15. 15.
    C.K. Law, J.H. Eberly, Phys. Rev. Lett. 92, 127903 (2004)CrossRefADSGoogle Scholar
  16. 16.
    V. Giovannetti, S. Lloyd, L. Maccone, Nature 412, 417 (2001)CrossRefADSGoogle Scholar
  17. 17.
    V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 87, 117902 (2001)CrossRefADSGoogle Scholar
  18. 18.
    A. Valencia, G. Scarcelli, Y. Shih, Appl. Phys. Lett. 85, 2635 (2004)CrossRefADSGoogle Scholar
  19. 19.
    V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330 (2004)CrossRefADSGoogle Scholar
  20. 20.
    V. Giovannetti, S. Lloyd, L. Maccone, J.H. Shapiro, F.N.C. Wong, Phys. Rev. A 70, 043808 (2004)CrossRefADSGoogle Scholar
  21. 21.
    F. Hou, R. Dong, R. Quan, Y. Zhang, Y. Bai, T. Liu, S. Zhang, T. Zhang, Adv. Space Res. 50, 1489 (2012)CrossRefADSGoogle Scholar
  22. 22.
    A. Yabushita, T. Kobayashi, Phys. Rev. A 69, 013806 (2004)CrossRefADSGoogle Scholar
  23. 23.
    A.F. Abouraddy, M.B. Nasr, B.E.A. Saleh, A.V. SErgienko, M.C. Teich, Phys. Rev. A 65, 053817 (2002)CrossRefADSGoogle Scholar
  24. 24.
    A.V. Sergienko, B.E.A. Saleh, M.C. Teich, Opt. Lett. 29, 2429 (2004)CrossRefADSGoogle Scholar
  25. 25.
    L. Dorilian, L. Novotny, Opt. Lett. 37, 4077 (2012)CrossRefGoogle Scholar
  26. 26.
    M.B. Nasr, B.E.A. Saleh, A.V. SErgienko, M.C. Teich, Phys. Rev. Lett. 91, 083601 (2003)CrossRefADSGoogle Scholar
  27. 27.
    M.C. Booth, B.E.A. Saleh, M.C. Teich, Opt. Commun. 284, 2542 (2011)CrossRefADSGoogle Scholar
  28. 28.
    T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko, Phys. Rev. A 52, R3429 (1995)CrossRefADSGoogle Scholar
  29. 29.
    P. Zerom, K. Wai, C. Chan, J.C. Howell, R.W. Boyd, Phys. Rev. A 84, 061804(R) (2011)CrossRefADSGoogle Scholar
  30. 30.
    S. Jeff, M. Michiel, Rev. Sci. Instrum. 72, 2855 (2001)CrossRefGoogle Scholar
  31. 31.
    S. Brasselet, V.L. Floc’h, F. Treussart, J.F. Roch, J. Zyss, E. Botzung-Appert, A. Ibanez, Phys. Rev. Lett. 92, 207401 (2003)CrossRefADSGoogle Scholar
  32. 32.
    B. Dayan, A. Peer, A.A. Friesem, Y. Silberberg, Phys. Rev. Lett. 93, 023005 (2004)CrossRefADSGoogle Scholar
  33. 33.
    L. Zhang, Ch. Silberhorn, I.A. Walmsley, Phys. Rev. Lett. 100, 110504 (2008)CrossRefADSGoogle Scholar
  34. 34.
    J. Nunn, L.J. Wright, C. Söller, L. Zhang, I.A. Walmsley, B.J. Smith, Opt. Express 21, 15971 (2013)CrossRefGoogle Scholar
  35. 35.
    C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)CrossRefADSGoogle Scholar
  36. 36.
    M.V. Fedorov, M.A. Efremov, A.E. Kazakov, K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 69, 052117 (2004)CrossRefADSGoogle Scholar
  37. 37.
    M.V. Fedorov, M.A. Efremov, P.A. Volkov, J.H. Eberly, J. Phys. B At. Mol. Opt. Phys. 39, S467 (2006)CrossRefADSGoogle Scholar
  38. 38.
    O. Kuzucu, M. Fiorentino, M.A. Albota, F.C. Wong, F.X. Kartner, Phys. Rev. Lett. 94, 083601 (2005)CrossRefADSGoogle Scholar
  39. 39.
    Z.D. Walton, M.C. Booth, A.V. Sergienko, B.E.A. Saleh, M.C. Teich, Phys. Rev. A 67, 053810 (2003)CrossRefADSGoogle Scholar
  40. 40.
    D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000)CrossRefzbMATHGoogle Scholar
  41. 41.
    X. Shi, A. Valencia, M. Hendrych, J.P. Torres, Opt. Lett. 33, 875 (2008)CrossRefADSGoogle Scholar
  42. 42.
    T.E. Keller, M.H. Rubin, Phys. Rev. A 56, 1534 (1997)CrossRefADSGoogle Scholar
  43. 43.
    M. Avenhaus, M.V. Chekhova, L.A. Krivitsky, G. Leuchs, C. Silberhorn, Phys. Rev. A 79, 043836 (2009)CrossRefADSGoogle Scholar
  44. 44.
    Y. Zhang, R. Quan, F. Hou, Y. Bai, T. Liu, S. Zhang, R. Dong, Acta Phys. Sin. 62, 144206 (2013)Google Scholar
  45. 45.
    I.A. Khan, J.C. Howell, Phys. Rev. A 73, 031801(R) (2006)CrossRefADSGoogle Scholar
  46. 46.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Chap. 22.4 (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  47. 47.
    R. Erdmann, D. Branning, W. Grice, I.A. Walmsley, Phys. Rev. A 62, 053810 (2000)CrossRefADSGoogle Scholar
  48. 48.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 2001)Google Scholar
  49. 49.
    K. Fradkin, A. Arie, A. Skliar, G. Rosenman, Appl. Phys. Lett. 74, 914 (1999)CrossRefADSGoogle Scholar
  50. 50.
    T.Y. Fan, C.E. Huang, B.Q. Hu, R.C. Eckardt, Y.X. Fan, R.L. Byer, R.S. Feigelson, Appl. Opt. 26, 2390 (1987)CrossRefADSGoogle Scholar
  51. 51.
    S. Emanueli, A. Arie, Appl. Opt. 42, 6661 (2003)CrossRefADSGoogle Scholar
  52. 52.
    A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, J.P. Torres, Phys. Rev. Lett. 99, 243601 (2007)CrossRefADSGoogle Scholar
  53. 53.
    Y. Mikhailova, P. Volkov, M. Fedorov, Phys. Rev. A 78, 062327 (2008)CrossRefADSGoogle Scholar
  54. 54.
    M.M. Wang, R.A. Quan, Z.Y. Tai, F.Y. Hou, T. Liu, S.G. Zhang, R.F. Dong, Acta Phys. Sin. 19, 194206 (2014)Google Scholar
  55. 55.
    T.G. Noh, H. Kim, C.J. Youn, S.B. Cho, J. Hong, T. Zyung, Opt. Express 14, 2805 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Runai Quan
    • 1
  • Mengmeng Wang
    • 1
    • 2
  • Feiyan Hou
    • 1
  • Zhaoyang Tai
    • 1
    • 2
  • Tao Liu
    • 1
  • Shougang Zhang
    • 1
  • Ruifang Dong
    • 1
  1. 1.Key Laboratory of Time and Frequency Primary Standards, National Time Service CenterChinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations