Applied Physics B

, Volume 118, Issue 3, pp 361–368 | Cite as

Quantum cascade laser-based MIR spectrometer for the determination of CO and \(\hbox {CO}_2\) concentrations and temperature in flames

  • Patrick Nau
  • Julia Koppmann
  • Alexander Lackner
  • Katharina Kohse-Höinghaus
  • Andreas Brockhinke


An experimental setup for the simultaneous detection of CO and \(\hbox {CO}_2\) and the temperature in low-pressure flames using a pulsed quantum cascade laser at 4.48 μm is presented. This comparatively new type of laser offers good output energies and beam quality in the mid-infrared, where the strong fundamental transitions of many molecules of interest can be accessed. A single-pass absorption setup was sufficient to obtain good accuracy for the stable species investigated here. Due to the high repetition rate of the laser and the speed of the data acquisition, measurement of two-dimensional absorption spectra and subsequent tomographic reconstruction was feasible. As demonstration of this technique, two-dimensional CO and \(\hbox {CO}_2\) concentrations have been measured in two fuel-rich methane flames with different coflow gases (nitrogen and air). The influence of the coflow gas on the flame center concentration profiles was investigated and compared with one-dimensional model simulations.


Burner Surface Quantum Cascade Laser Tomographic Reconstruction Flame Center Interband Cascade Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded in part by DFG in SFB 686 (TP B3 and TP C5). Help of Raimund Noske with the absorption cell measurements is greatly appreciated.


  1. 1.
    M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205–208 (1984)CrossRefADSGoogle Scholar
  2. 2.
    R.K. Hanson, P.A. Kuntz, C.H. Kruger, Appl. Opt. 16(8), 2045–2048 (1977)CrossRefADSGoogle Scholar
  3. 3.
    R.K. Hanson, Proc. Combust. Inst. 33, 1–40 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39(30), 5579–5589 (2000)CrossRefADSGoogle Scholar
  5. 5.
    S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 109, 533–540 (2012)CrossRefADSGoogle Scholar
  6. 6.
    K.L. McNesby, R.G. Daniel, J.B. Morris, A.W. Miziolek, Appl. Opt. 34(18), 3318–3324 (1995)CrossRefADSGoogle Scholar
  7. 7.
    L. Wondraczek, A. Khorsandi, U. Willer, G. Heide, W. Schade, G.H. Frischat, Flame. Combust 138(1–2), 30–39 (2004)CrossRefGoogle Scholar
  8. 8.
    R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707–709 (1971)Google Scholar
  9. 9.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264(5158), 553–556 (1994)CrossRefADSGoogle Scholar
  10. 10.
    G. Duxbury, D. Wilson, K. Hay, N. Langford, J. Phys. Chem. A 117, 9738–9745 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Cheesman, J.A. Smith, M.N.R. Ashfold, N. Langford, S. Wright, G. Duxbury, J. Phys. Chem. A 110, 2821–2828 (2006)CrossRefGoogle Scholar
  12. 12.
    S.D. Wehe, M.G. Allen, X. Liu, J. Jeffries, R. Hanson, NO and CO Absorption Measurements with a Mid-IR Quantum Cascade Laser for Engine Exhaust Applications, in paper AIAA 2003–0588 at 41st Aerospace Sciences Meeting (Reno, NV, Jan. 2003)Google Scholar
  13. 13.
    X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 34, 3583–3592 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Vanderover, M.A. Oehlschlaeger, Appl. Phys. B 99(1–2), 353–362 (2010)CrossRefADSGoogle Scholar
  15. 15.
    J. Vanderover, W. Wang, M.A. Oehlschlaeger, Appl. Phys. B 103(4), 959–966 (2011)CrossRefADSGoogle Scholar
  16. 16.
    W. Ren, A. Farooq, D. Davidson, R. Hanson, Appl. Phys. B 107, 849–860 (2012)CrossRefADSGoogle Scholar
  17. 17.
    P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, Detection of formaldehyde in flames using UV and MIR absorption spectroscopy, accepted for publication in Z. Phys. Chem. (2014). doi: 10.1515/zpch-2014-0563
  18. 18.
    E. Normand, M. McCulloch, G. Duxbury, N. Langford, Opt. Lett. 28, 16–18 (2003)CrossRefADSGoogle Scholar
  19. 19.
    M.T. McCulloch, E.L. Normand, N. Langford, G. Duxbury, D.A. Newnham, J. Opt. Soc. Am. B 20, 1761–1768 (2003)CrossRefADSGoogle Scholar
  20. 20.
    T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, J. Appl. Phys. 95, 4551–4554 (2004)CrossRefADSGoogle Scholar
  21. 21.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. and Rad. Transfer 111, 2139–2150 (2010)CrossRefADSGoogle Scholar
  22. 22.
  23. 23.
    C.J. Dasch, Appl. Opt. 31(8), 1146–1152 (1992)CrossRefADSGoogle Scholar
  24. 24.
    R. Villarreal, P. Varghese, Appl. Opt. 44(31), 6786–6795 (2005)CrossRefADSGoogle Scholar
  25. 25.
    J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27(4), 437–444 (1982)CrossRefADSGoogle Scholar
  26. 26.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, J. William C. Gardiner, V.V. Lissianski, Z. Qin, GRI-Mech 3.0, (2000)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Patrick Nau
    • 1
    • 2
  • Julia Koppmann
    • 2
  • Alexander Lackner
    • 2
  • Katharina Kohse-Höinghaus
    • 2
  • Andreas Brockhinke
    • 2
  1. 1.Institute of Combustion TechnologyGerman Aerospace CenterStuttgartGermany
  2. 2.Universität BielefeldBielefeldGermany

Personalised recommendations