Advertisement

Applied Physics B

, Volume 119, Issue 1, pp 11–19 | Cite as

Cavity-enhanced photoacoustic detection using acoustic and fiber-optic resonators

  • Amy G. MacLean
  • Leila Tamina Schneider
  • Annica I. Freytag
  • Adam Gribble
  • Jack A. Barnes
  • Hans-Peter LoockEmail author
Article

Abstract

A wineglass has been used as an acoustic resonator to enhance the photoacoustic signal generated by laser excitation of absorbing dyes in solution. The amplitude of the acoustic signal was recorded using a fiber-optic transducer based on a Fabry–Pérot cavity attached to the rim of the wineglass. The optical and acoustic properties of the setup were characterized, and it was used to quantify the concentration of phosphomolybdenum blue and methyl red solutions. Detection limits of 1.2 ppm and 8 μM were obtained, respectively.

Keywords

Fiber Bragg Grating Photoacoustic Signal Acoustic Resonator Phosphomolybdenum Acoustic Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Ian Bergeron for technical assistance with the experiments. Financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. We especially thank Xijia Gu (Ryerson University) and his group for the fabrication of the fiber Fabry–Pérot cavity and Gianluca Gagliardi for many discussions.

References

  1. 1.
    D.V. Bageshwar, A.S. Pawar, V.V. Khanvilkar, V.J. Kadam, Photoacoustic spectroscopy and its applications—a tutorial review. Eurasian J. Anal. Chem. 5(2), 187–203 (2010)Google Scholar
  2. 2.
    X. Chen et al., Quantum cascade laser based standoff photoacoustic chemical detection. Opt. Express 19(21), 20251–20257 (2011)CrossRefADSGoogle Scholar
  3. 3.
    A. Mukherjee, S. Von der Porten, C.K.N. Patel, Standoff detection of explosive substances at distances of up to 150 m. Appl. Opt. 49(11), 2072–2078 (2010)CrossRefGoogle Scholar
  4. 4.
    P. Patimisco et al., Quartz-enhanced photoacoustic spectroscopy: a review. Sensors 14(4), 6165–6206 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Cox et al., Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17(6), 0612021–06120222 (2012)CrossRefGoogle Scholar
  6. 6.
    S.D. Campbell, S.S. Yee, M.A. Afromowitz, Applications of photoacoustic spectroscopy to problems in dermatology research. IEEE Trans. Biomed. Eng. 26(4), 220–227 (1979)CrossRefGoogle Scholar
  7. 7.
    A. Berrou et al., High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO. Appl. Phys. B 98(1), 217–230 (2010)CrossRefADSGoogle Scholar
  8. 8.
    D. Weidmann et al., Monitoring of ethylene by a pulsed quantum cascade laser. Appl. Opt. 43(16), 3329–3334 (2004)CrossRefADSGoogle Scholar
  9. 9.
    C. Fischer, R. Bartlome, M.W. Sigrist, The potential of mid-infrared photoacoustic spectroscopy for the detection of various doping agents used by athletes. Appl. Phys. B 85(2–3), 289–294 (2006)CrossRefADSGoogle Scholar
  10. 10.
    R.A. Kruger et al., Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med. Phys. 22(10), 1605–1609 (1995)CrossRefGoogle Scholar
  11. 11.
    L.H.V. Wang, S. Hu, Photoacoustic tomography. In vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)CrossRefADSGoogle Scholar
  12. 12.
    A. Rosencwaig, Photoacoustic spectroscopy. Annu. Rev. Biophys. Bioeng. 9, 31–54 (1980)CrossRefGoogle Scholar
  13. 13.
    S. Barbieri et al., Gas detection with quantum cascade lasers: an adapted photoacoustic sensor based on Helmholtz resonance. Rev. Sci. Instrum. 73(6), 2458–2461 (2002)CrossRefADSGoogle Scholar
  14. 14.
    A. Kosterev et al., Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B Lasers Opt. 90(2), 165–176 (2008)CrossRefADSGoogle Scholar
  15. 15.
    S.D. Katewa, S.S. Katyare, A simplified method for inorganic phosphate determination and its application for phosphate analysis in enzyme assays. Anal. Biochem. 323(2), 180–187 (2003)CrossRefGoogle Scholar
  16. 16.
    P. Liberatore, Cintra 10e-Enhanced Sensitivity from 6001,200 nm, Analysis of Phosphorous to Sub-ppb Levels. GBC Scientific Application Notes (2009). http://www.gbcscientific.com/appnotes/uv_app_note_010.pdf
  17. 17.
    A.P. French, In vino veritas—a study of wineglass acoustics. Am. J. Phys. 51(8), 688–694 (1983)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    K.D. Skeldon, V.J. Nadeau, C. Adams, The resonant excitation of a wineglass using positive feedback with optical sensing. Am. J. Phys. 66(10), 851–860 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Q.X. Yang et al., Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers. Opt. Commun. 276(1), 97–106 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Q.X. Yang et al., Fiber Bragg grating photoacoustic detector for liquid chromatography. Analyst 133(11), 1567–1572 (2008)CrossRefADSGoogle Scholar
  21. 21.
    A. Hongo, S. Kojima, S. Komatsuzaki, Applications of fiber Bragg grating sensors and high-speed interrogation techniques. Struct. Control Health Monit. 12(3–4), 269–282 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Avino et al., Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 19(25), 25057–25065 (2011)CrossRefADSGoogle Scholar
  23. 23.
    J.A. Barnes, G. Gagliardi, H.-P. Loock, The photonic guitar pick-up: fiber strain sensors find applications in music recording. IEEE Photonics Soc. News 27(6), 19–23 (2013)Google Scholar
  24. 24.
    G. Gagliardi et al., Optical fiber sensing based on reflection laser spectroscopy. Sensors 10(3), 1823–1845 (2010)CrossRefGoogle Scholar
  25. 25.
    J.H. Chow et al., Laser frequency-noise-limited ultrahigh resolution remote fiber sensing. Opt. Express 14(11), 4617–4624 (2006)CrossRefADSGoogle Scholar
  26. 26.
    G. Gagliardi et al., Probing the ultimate limit of fiber-optic strain sensing. Science 330(6007), 1081–1084 (2010)CrossRefADSGoogle Scholar
  27. 27.
    E.D. Black, An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69(1), 79–87 (2001)CrossRefADSGoogle Scholar
  28. 28.
    D. Fogg, N. Wilkinson, The colorimetric determination of phosphorus. Analyst 83(988), 406–414 (1958)CrossRefADSGoogle Scholar
  29. 29.
    G.R. Bartlett, Phosphorus assay in column chromatography. J. Biol. Chem. 234(3), 466–468 (1959)Google Scholar
  30. 30.
    G. Jundt et al., Vibrational modes of partly filled wine glasses. J. Acoust. Soc. Am. 119(6), 3793–3798 (2006)CrossRefADSGoogle Scholar
  31. 31.
    M. Courtois, B. Guirao, E. Fort, Tuning the pitch of a wine glass by playing with the liquid inside. Eur. J. Phys. 29(2), 303–312 (2008)CrossRefGoogle Scholar
  32. 32.
    Y.Y. Chen, Why does water change the pitch of a singing wineglass the way it does? Am. J. Phys. 73(11), 1045–1049 (2005)CrossRefADSGoogle Scholar
  33. 33.
    R.E. Apfel, Whispering waves in a wineglass. Am. J. Phys. 53(11), 1070–1073 (1985)CrossRefADSGoogle Scholar
  34. 34.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn (Wiley, Hoboken, 2007)Google Scholar
  35. 35.
    M. Alonso, E.J. Finn, Fundamental University Physics, vol. I Mechanics (Addison-Wesley, Reading, 1967), p. 435Google Scholar
  36. 36.
    D.W. Allan, Statistics of atomic frequency standards. Proc. IEEE 54(2), 221–230 (1966)CrossRefADSGoogle Scholar
  37. 37.
    P. Werle, R. Mücke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 57(2), 131–139 (1993)CrossRefADSGoogle Scholar
  38. 38.
    S. Punj, G.H. John, Purification and identification of an FMN-dependent NAD(P)H azoreductase from Enterococcus faecalis. Curr. Issues Mol. Biol. 11(2), 59–65 (2009)Google Scholar
  39. 39.
    H.P. Loock, P.D. Wentzell, Detection limits of chemical sensors: applications and misapplications. Sens. Actuators B Chem. 173, 157–163 (2012)CrossRefGoogle Scholar
  40. 40.
    D. Bicanic et al., Photoacoustic detection of orthophosphate in aqueous solution. Water Air Soil Pollut. 45(1), 115–120 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amy G. MacLean
    • 1
  • Leila Tamina Schneider
    • 1
  • Annica I. Freytag
    • 1
  • Adam Gribble
    • 1
  • Jack A. Barnes
    • 1
  • Hans-Peter Loock
    • 1
    Email author
  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations