Advertisement

Applied Physics B

, Volume 118, Issue 2, pp 169–183 | Cite as

Determination of small soot particles in the presence of large ones from time-resolved laser-induced incandescence

Article

Abstract

A novel strategy for the analysis of time-resolved laser-induced incandescence (TiRe-LII), called two-exponential reverse fitting (TERF), is introduced. The method is based on combined monoexponential fits to the LII signal decay at various delay times and approximates the particle-size distribution as a weighted combination of one large and one small monodisperse equivalent mean particle size without requiring assumption on the particle-size distribution. The effects of particle size, heat-up temperature, aggregate size, and pressure on the uncertainty of this method are evaluated using numerical experiments for lognormal and bimodal size distributions. TERF is applied to TiRe-LII measured in an atmospheric pressure laminar non-premixed ethylene/air flame at various heights above burner. The results are compared to transmission electron microscopy (TEM) measurements of thermophoretically sampled soot. The particle size of the large particle-size class agreed well for both methods. The size of the small particle-size class and the relative contribution did not agree which is attributed to missing information in the TEM results for very small particles. These limitations of TEM measurements are discussed and the effect of the exposure time of the sampling grid is evaluated.

Keywords

Soot Particle Soot Formation Transmission Electron Microscopy Measurement Flame Height Monoexponential Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.A. Melton, Appl. Opt. 23, 2201–2208 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333–354 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503–521 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hofmann, B.F. Kock, C. Schulz, in Eur. Combust. Meet., European Combustion Meeting 2007, Chania, 2007Google Scholar
  5. 5.
    M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B 104, 427–438 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777–788 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629–639 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    B. Menkiel, A. Donkerbroek, R. Uitz, R. Cracknell, L. Ganippa, Combust. Flame 159, 2985–2998 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641–648 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Banerjee, B. Menkiel, L.C. Ganippa, Appl. Phys. B 96, 571–579 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Johnsson, H. Bladh, P.-E. Bengtsson, Appl. Phys. B 99, 817–823 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A.D. Abid, N. Heinz, E.D. Tolmachoff, D.J. Phares, C.S. Campbell, H. Wang, Combust. Flame 154, 775–788 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Dankers, A. Leipertz, Appl. Opt. 43, 3726–3731 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    N.A. Fuchs, Geofis. Pura E Appl. 56, 185–193 (1963)ADSCrossRefGoogle Scholar
  15. 15.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355–382 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    K.J. Daun, B.J. Stagg, F. Liu, G.J. Smallwood, D.R. Snelling, Appl. Phys. B 87, 363–372 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    F. Liu, G.J. Smallwood, D.R. Snelling, J Quant. Spectrosc. Radiat. Transf. 93, 301–312 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Hofmann, Laser-Induced Incandescence for Soot Diagnostics at High Pressure, Ph.D. thesis, Heidelberg University, 2006Google Scholar
  19. 19.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773–6785 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647–5658 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    E. Cenker, G. Bruneaux, L.M. Pickett, C. Schulz, SAE Int. J. Engines 6, 352–365 (2013)Google Scholar
  22. 22.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203–218 (1983)CrossRefGoogle Scholar
  23. 23.
    R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254–259 (1987)CrossRefGoogle Scholar
  24. 24.
    P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B. Long, Proc. Combust. Inst. 33, 743–750 (2011)CrossRefGoogle Scholar
  25. 25.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623–636 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180–190 (2004)CrossRefGoogle Scholar
  27. 27.
    R.J. Santoro, T.T. Yeh, J.J. Horvath, H.G. Semerjian, Combust. Sci. Technol. 53, 89–115 (1987)CrossRefGoogle Scholar
  28. 28.
    J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Appl. Phys. B 112, 321–332 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    K.J. Daun, G.J. Smallwood, F. Liu, J. Heat Transf 130, 1–9 (2008)Google Scholar
  30. 30.
    D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657–669 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    K. Tian, K.A. Thomson, F. Liu, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 144, 782–791 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • E. Cenker
    • 1
    • 2
    • 3
  • G. Bruneaux
    • 1
    • 2
  • T. Dreier
    • 3
  • C. Schulz
    • 3
  1. 1.IFP Energies Nouvelles, Institut Carnot IFPEN Transports EnergieRueil-MalmaisonFrance
  2. 2.École Centrale ParisChatenay-MalabryFrance
  3. 3.Institute for Combustion and Gas Dynamics – Reactive Fluids (IVG) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburgGermany

Personalised recommendations