Skip to main content
Log in

Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this manuscript, we present the first quantitative multi-scalar measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Temperature and \(\hbox {H}_{2}\hbox {O}\) mole fraction are determined simultaneously from broadband \(\hbox {H}_{2}\hbox {O}\) spectra ranging from 1,340 to 1,485 nm by a multi-peak least square fit between experiments and simulated spectra. To this end, a combination of the most comprehensive databases, namely the Barber–Tennyson database (BT2) and HITRAN2012, is used. Line strength values listed in BT2 are combined with averaged broadening coefficients and temperature exponents based on the upper rotational quantum number J from the latest HITRAN database to precisely model the line shape function for each transition. The height-dependent temperature and \(\hbox {H}_{2}\hbox {O}\) mole fraction profiles of a premixed one-dimensional flame of a McKenna type burner are reconstructed by direct comparison of experimental spectra with theory. For verification, the temperature data obtained are compared with a profile determined by coherent anti-Stokes Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.F. Kaminski, R.S. Watt, A.D. Elder, J.H. Frank, J. Hult, Appl. Phys. B 92, 367–378 (2008)

    Article  ADS  Google Scholar 

  2. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Opt. Express 16, 10178–10188 (2008)

    Article  ADS  Google Scholar 

  3. R.S. Watt, T. Laurila, C.F. Kaminski, J. Hult, Appl. Spectrosc. 63, 1389–1395 (2009)

    Article  ADS  Google Scholar 

  4. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161–173 (2008)

    Article  ADS  Google Scholar 

  5. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, Opt. Express 21, 19951–19965 (2013)

    Article  Google Scholar 

  6. L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, H. Robert, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15, 15115–15128 (2007)

    Article  ADS  Google Scholar 

  7. J. Hult, R.S. Watt, C.F. Kaminski, Opt. Express 15, 11385–11395 (2007)

    Article  ADS  Google Scholar 

  8. S.T. Sanders, Appl. Phys. B 75, 799–802 (2002)

    Article  ADS  Google Scholar 

  9. T. Werblinski, S.R. Engel, R. Engelbrecht, L. Zigan, S. Will, Opt. Express 21, 13656–13667 (2013)

    Article  ADS  Google Scholar 

  10. T. Werblinski, F. Mittmann, L. Zigan, S. Will, in 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2014)

  11. R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006)

    Article  ADS  Google Scholar 

  12. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, VlG Tyuterev, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  13. B.A. Voronin, N.N. Lavrentieva, T.P. Mishina, T.Y. Chesnokova, J. Quantum Spectrosc. Radiat. Transf. 111, 2308–2314 (2010)

    Article  ADS  Google Scholar 

  14. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, Appl. Opt. 36, 3253–3259 (1997)

    Article  ADS  Google Scholar 

  15. J. Hult, R.S. Watt, C.F. Kaminski, J. Lightwave Technol. 25, 820–824 (2007)

    Article  ADS  Google Scholar 

  16. V. Mazet, C. Carteret, D. Brie, D. Idier, B. Humbert, Chemom. Intell. Lab. Syst. 76, 121–133 (2005)

    Article  Google Scholar 

  17. L.A. Kranendonk, A.W. Caswell, S.T. Sanders, Appl. Opt. 46, 4117–4124 (2007)

    Article  ADS  Google Scholar 

  18. J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415–418 (2004)

    Article  Google Scholar 

  19. P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhlerl, A. Bodi, T. Gerber, T. Kasper, Rev. Sci. Instrum. 85, 025101 (2014)

    Article  ADS  Google Scholar 

  20. http://www.gaseq.co.uk/ (Version 0.79)

  21. X. Liu, J.B. Jeffries, R.K. Hanson, AIAA J. 451, 411–419 (2007)

    Article  ADS  Google Scholar 

  22. S. Dupont, Z. Qu, S.-S. Kiwanuka, L.E. Hooper, J.C. Knight, S.R. Keiding, C.F. Kaminski, Laser Phys. Lett. 11, 1–7 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German Excellence Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Will.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werblinski, T., Mittmann, F., Altenhoff, M. et al. Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Appl. Phys. B 118, 153–158 (2015). https://doi.org/10.1007/s00340-014-5964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5964-1

Keywords

Navigation