Applied Physics B

, Volume 118, Issue 1, pp 153–158 | Cite as

Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame

  • Thomas Werblinski
  • Frank Mittmann
  • Michael Altenhoff
  • Thomas Seeger
  • Lars Zigan
  • Stefan WillEmail author


In this manuscript, we present the first quantitative multi-scalar measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Temperature and \(\hbox {H}_{2}\hbox {O}\) mole fraction are determined simultaneously from broadband \(\hbox {H}_{2}\hbox {O}\) spectra ranging from 1,340 to 1,485 nm by a multi-peak least square fit between experiments and simulated spectra. To this end, a combination of the most comprehensive databases, namely the Barber–Tennyson database (BT2) and HITRAN2012, is used. Line strength values listed in BT2 are combined with averaged broadening coefficients and temperature exponents based on the upper rotational quantum number J from the latest HITRAN database to precisely model the line shape function for each transition. The height-dependent temperature and \(\hbox {H}_{2}\hbox {O}\) mole fraction profiles of a premixed one-dimensional flame of a McKenna type burner are reconstructed by direct comparison of experimental spectra with theory. For verification, the temperature data obtained are compared with a profile determined by coherent anti-Stokes Raman scattering.


Negative Dispersion Broadband Spectrum Effective Path Length Absorption Path Length Temperature Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German Excellence Initiative.


  1. 1.
    C.F. Kaminski, R.S. Watt, A.D. Elder, J.H. Frank, J. Hult, Appl. Phys. B 92, 367–378 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Opt. Express 16, 10178–10188 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R.S. Watt, T. Laurila, C.F. Kaminski, J. Hult, Appl. Spectrosc. 63, 1389–1395 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161–173 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, Opt. Express 21, 19951–19965 (2013)CrossRefGoogle Scholar
  6. 6.
    L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, H. Robert, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15, 15115–15128 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Hult, R.S. Watt, C.F. Kaminski, Opt. Express 15, 11385–11395 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    S.T. Sanders, Appl. Phys. B 75, 799–802 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    T. Werblinski, S.R. Engel, R. Engelbrecht, L. Zigan, S. Will, Opt. Express 21, 13656–13667 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    T. Werblinski, F. Mittmann, L. Zigan, S. Will, in 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2014)Google Scholar
  11. 11.
    R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, VlG Tyuterev, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Voronin, N.N. Lavrentieva, T.P. Mishina, T.Y. Chesnokova, J. Quantum Spectrosc. Radiat. Transf. 111, 2308–2314 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, Appl. Opt. 36, 3253–3259 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hult, R.S. Watt, C.F. Kaminski, J. Lightwave Technol. 25, 820–824 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    V. Mazet, C. Carteret, D. Brie, D. Idier, B. Humbert, Chemom. Intell. Lab. Syst. 76, 121–133 (2005)CrossRefGoogle Scholar
  17. 17.
    L.A. Kranendonk, A.W. Caswell, S.T. Sanders, Appl. Opt. 46, 4117–4124 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415–418 (2004)CrossRefGoogle Scholar
  19. 19.
    P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhlerl, A. Bodi, T. Gerber, T. Kasper, Rev. Sci. Instrum. 85, 025101 (2014)ADSCrossRefGoogle Scholar
  20. 20. (Version 0.79)
  21. 21.
    X. Liu, J.B. Jeffries, R.K. Hanson, AIAA J. 451, 411–419 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S. Dupont, Z. Qu, S.-S. Kiwanuka, L.E. Hooper, J.C. Knight, S.R. Keiding, C.F. Kaminski, Laser Phys. Lett. 11, 1–7 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Werblinski
    • 1
    • 2
  • Frank Mittmann
    • 1
  • Michael Altenhoff
    • 1
    • 2
  • Thomas Seeger
    • 2
    • 3
  • Lars Zigan
    • 1
    • 2
  • Stefan Will
    • 1
    • 2
    Email author
  1. 1.Lehrstuhl für Technische Thermodynamik (LTT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Lehrstuhl für Technische ThermodynamikUniversität SiegenSiegenGermany

Personalised recommendations