Advertisement

Applied Physics B

, Volume 118, Issue 1, pp 47–60 | Cite as

Spatial quality improvement of a Ti:Sapphire laser beam by modal filtering

  • Benoît Mahieu
  • David Gauthier
  • Michel Perdrix
  • Xunyou Ge
  • Willem Boutu
  • Fabien Lepetit
  • Fan Wang
  • Bertrand Carré
  • Thierry Auguste
  • Hamed Merdji
  • David Garzella
  • Olivier Gobert
Article

Abstract

We present a study on the improvement of the spatial quality of a laser beam, called modal filtering, suitable to high-energy lasers. The method is theoretically compared with the classical pinhole filtering technique in the case of an astigmatic Gaussian beam, illustrating, in this particular case, its efficiency for filtering low spatial frequencies. Experimental study of the modal filtering of a temporally chirped beam from a Ti:Sapphire chirped-pulse-amplification system is presented. Beam profile, wavefront and pulse duration after compression were measured, showing a dramatic improvement of beam quality and no modifications of the temporal distribution. High-order harmonic generation in a rare gas, a highly nonlinear process which is phase-matching dependent, was used to test the effect of the filter and showed a clear enhancement of the generation.

Keywords

Focal Plane Gaussian Beam Hollow Fiber Astigmatism High Spatial Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been sustained by ANR I-NanoX project and FEMTO-X-MAG. We thank Giovanni De Ninno and Romain Bachelard for constructive discussions and are also grateful to the Egide agency, the Triangle de la Physique network and the COST European network for their financial support in the framework of, respectively, the XUV-FISCH project, the XUV-PhLAGH project and the MP1203 action.

References

  1. 1.
    D. Strickland, G. Mourou, Optics Comm. 56, 219 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    V. Ramanathan et al., Rev. Sci. Instrum. 77, 103103 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2006)Google Scholar
  4. 4.
    R. Paschotta, Opt. Express 14, 6069–6074 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J.W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005)Google Scholar
  6. 6.
    P.M. Celliers et al., Appl. Opt. 37, 2371–2378 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S. Sinha et al., Appl. Opt. 45, 4947–4956 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    R.K. Tyson, Appl. Opt. 21, 787–793 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    H. Yan-Lan et al., Chin. Phys. B 19, 074215 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Szatmári, Z. Bakonyi, P. Simon, Optics Commun. 134, 199 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    G. Doumy et al., Phys. Rev. E 69, 026402–1 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A. Jullien et al., Opt. Lett. 30, 920 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ksendzov et al., Appl. Opt. 47, 5728–5735 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    O. Wallner, W.R. Leeb, R. Flatscher, Proc. SPIE 4838, 668–679 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill Book Co., New York, 1941)zbMATHGoogle Scholar
  17. 17.
    E. Snitzer, J. Opt. Soc. Am. 51, 491–498 (1961)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783–1809 (1964)CrossRefGoogle Scholar
  19. 19.
    J.J. Degnan, Appl. Opt. 12, 1026 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    B. Lü, B. Zhang, B. Cai, J. Mod. Opt. 40, 1731–1743 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    M.W. Sasnett, Propagation of multimode laser beams—the M\(^2\) factor, in The Physics and Technology of Laser Resonators, ed. by D.R. Hall, P.E. Jackson (Hilger, New York, 1989), pp. 132–142Google Scholar
  22. 22.
    V.N. Mahajan, Optical Imaging and Aberrations: Part I (Ray Geometrical Optics SPIE Press, Bellingham, 1998)CrossRefGoogle Scholar
  23. 23.
    V.N. Mahajan, Optical Imaging and Aberrations: Part II (Wave Diffraction Optics SPIE Press, Bellingham, 2011)Google Scholar
  24. 24.
    K.S. Repasky et al., Appl. Opt. 36, 7 (1997)CrossRefGoogle Scholar
  25. 25.
    ISO 11146–1:2005 Lasers and laser-related equipments—Test methods for laser beam widths, divergence angles and beam propagation ratiosGoogle Scholar
  26. 26.
    A.E. Siegman, How to (Maybe) measure laser beam quality, in Diode Pumped Solid State Lasers: Applications and Issues, Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1Google Scholar
  27. 27.
    J.R. Fienup, Appl. Opt. 21, 15 (1982)CrossRefGoogle Scholar
  28. 28.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, Hoboken, 2007)Google Scholar
  29. 29.
    C. Iaconis, I.A. Walmsley, Opt. Lett. 23, 792–794 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    E. Takahashi et al., J. Opt. Soc. Am. B 20, 158–165 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    W. Boutu et al., Phys. Rev. A 84, 053819 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    H.-C. Bandulet et al., J. Phys. B At. Mol. Opt. Phys. 41, 245602 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    M. Nisoli et al., Phys. Rev. Lett. 88, 033902 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    P. Villoresi et al., Opt. Lett. 29, 207 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    W. Boutu et al., Phys. Rev. A 84, 063406 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S. Kazamias et al., Eur. Phys. J. D 21, 353–359 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    T. Auguste, O. Gobert, B. Carré, Phys. Rev. A 78, 033411 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)Google Scholar
  39. 39.
    M. Lewenstein et al., Phys. Rev. A 49, 2117 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benoît Mahieu
    • 1
    • 2
    • 3
  • David Gauthier
    • 1
  • Michel Perdrix
    • 1
  • Xunyou Ge
    • 1
  • Willem Boutu
    • 1
  • Fabien Lepetit
    • 1
  • Fan Wang
    • 1
  • Bertrand Carré
    • 1
  • Thierry Auguste
    • 1
  • Hamed Merdji
    • 1
    • 4
  • David Garzella
    • 1
  • Olivier Gobert
    • 1
  1. 1.Service des Photons Atomes et Molécules, Centre d’Etudes de SaclayCommissariat à l’Energie AtomiqueGif-sur-YvetteFrance
  2. 2.Sincrotrone Trieste ElettraBasovizzaItaly
  3. 3.Laboratory of Quantum OpticsUniversity of Nova GoricaAjdovščinaSlovenia
  4. 4.Stanford PULSE Center, SLACMenlo ParkUSA

Personalised recommendations