Applied Physics B

, Volume 117, Issue 4, pp 1107–1116 | Cite as

A transportable strontium optical lattice clock

  • N. Poli
  • M. Schioppo
  • S. Vogt
  • St. Falke
  • U. Sterr
  • Ch. Lisdat
  • G. M. Tino
Article

Abstract

We report on a transportable optical clock, based on laser-cooled strontium atoms trapped in an optical lattice. The experimental apparatus is composed of a compact source of ultra-cold strontium atoms including a compact cooling laser setup and a transportable ultra-stable laser for interrogating the optical clock transition. The whole setup (excluding electronics) fits within a volume of <2 m3. The high degree of operation reliability of both systems allowed the spectroscopy of the clock transition to be performed with 10 Hz resolution. We estimate a relative uncertainty of the clock of 7 × 10−15.

References

  1. 1.
    N. Poli, C.W. Oates, P. Gill, G.M. Tino, Optical atomic clocks. Rivista del Nuovo Cimento 36(12), 555–624 (2013)ADSGoogle Scholar
  2. 2.
    B.J. Bloom, T.L. Nicholson, J.R. Williams, S.L. Campbell, M. Bishof, X. Zhang, W. Zhang, S.L. Bromley, J. Ye, An optical lattice clock with accuracy and stability at the 10\(^{-18}\) level. Nature 506(7486), 71–75 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al\(^+\) optical clocks. Phys. Rev. Lett. 104(7), 070802 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, An atomic clock with \(10^{-18}\) instability. Science 341(6151), 1215–1218 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    S. Schiller, G.M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Görlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Müller, L. Iorio, C. Lämmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, Wei-Tou Ni, Liang Liu, Xuzong Chen, Jingbiao Chen, Kelin Gao, L. Cacciapuoti, R. Holzwarth, M.P. Hess, W. Schäfer, Einstein Gravity Explorer-a medium-class fundamental physics mission. Exp. Astron. 23(2), 573–610 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P. Wolf, Ch. J. Bordé, A. Clairon, L. Duchayne, A. Landragin, P. Lemonde, G. Santarelli, W. Ertmer, E. Rasel, F.S. Cataliotti, M. Inguscio, G.M. Tino, P. Gill, H. Klein, S. Reynaud, C. Salomon, E. Peik, O. Bertolami, P. Gill, J. Paramos, C. Jentsch, U. Johann, A. Rathke, P. Bouyer, L. Cacciapuoti, D. Izzo, P. De Natale, B. Christophe, P. Touboul, S.G. Turyshev, J. Anderson, M.E. Tobar, F. Schmidt-Kaler, J. Vigué, A.A. Madej, L. Marmet, M.C. Angonin, P. Delva, P. Tourrenc, G. Metris, H. Müller, R. Walsworth, Z.H. Lu, L.J. Wang, K. Bongs, A. Toncelli, M. Tonelli, H. Dittus, C. Lämmerzahl, G. Galzerano, P. Laporta, J. Laskar, A. Fienga, F. Roques, K. Sengstock, Quantum physics exploring gravity in the outer solar system: the SAGAS project. Exp. Astron. 23(2), 651–687 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Optical clocks and relativity. Science 329(5999), 1630–1633 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T.M. Fortier, M.S. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C.W. Oates, S.A. Diddams, Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 5(7), 425–429 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Rogers, R.J. Cappallo, H.F. Hinteregger, J.I. Levine, E.F. Nesman, J.C. Webber, A.R. Whitney, T.A. Clark, C. Ma, J. Ryan, B.E. Corey, C.C. Counselman, T.A. Herring, I.I. Shapiro, C.A. Knight, D.B. Shaffer, N.R. Vandenberg, R. Lacasse, R. Mauzy, B. Rayhrer, B.R. Schupler, J.C. Pigg, Very-long-baseline radio interferometry: the mark III system for geodesy, astrometry, and aperture synthesis. Science 219(4580), 51–54 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    D.R. Leibrandt, M.J. Thorpe, J.C. Bergquist, T. Rosenband, Field-test of a robust, portable, frequency-stable laser. Opt. Express 19(11), 10278–10286 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, H. Schnatz, A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336(6080), 441–444 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Williams, W.C. Swann, N.R. Newbury, High-stability transfer of an optical frequency over long fiber-optic links. J. Opt. Soc. Am. B-Opt. Phys. 25(8), 1284–1293 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    D. Calonico, E.K. Bertacco, C.E. Calosso, C. Clivati, G.A. Costanzo, A. Godone, M. Frittelli, A. Mura, N. Poli, D.V. Sutyrin, G.M. Tino, M. Zucco, F. Levi, High accuracy coherent optical frequency transfer over a doubled 642 km fiber link. Appl. Phys. B (2014). doi:10.1007/s00340-014-5917-8
  14. 14.
    S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grunert, C. Vian, F.P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, C. Salomon, Cold atom clocks and applications. J. Phys. B-At. Mol. Opt. Phys. 38(9, SI), S449–S468 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    N. Poli, R.E. Drullinger, M.G. Tarallo, G.M. Tino, M. Prevedelli, Strontium optical lattice clock with all semiconductor sources. in Proceedings of the 2007 IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum. Vols 1–4, pp. 655–658 (2007)Google Scholar
  16. 16.
    N. Poli, M.G. Tarallo, M. Schioppo, C.W. Oates, G.M. Tino, A simplified optical lattice clock. Appl. Phys. B 97(1), 27–33 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H. Katori, K. Hashiguchi, E.Y. Il’inova, V.D. Ovsiannikov, Magic wavelength to make optical lattice clocks insensitive to atomic motion. Phys. Rev. Lett. 103(15), 153004 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Schioppo, Development of a Transportable Strontium Optical Clock. PhD thesis, Dipartimento di Fisica e Astronomia, Università di Firenze, December (2010)Google Scholar
  19. 19.
    M. Schioppo, N. Poli, M. Prevedelli, S. Falke, Ch. Lisdat, U. Sterr, G.M. Tino, A compact and efficient strontium oven for laser-cooling experiments. Rev. Sci. Instrum. 83(10, 1), 103101 (2012)ADSGoogle Scholar
  20. 20.
    X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, P. Rosenbusch, Interference-filter-stabilized external-cavity diode lasers. Opt. Commun. 266(2), 609–613 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    S. Falke, M. Misera, U. Sterr, C. Lisdat, Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B 107(2), 301–311 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Vogt, C. Lisdat, T. Legero, U. Sterr, I. Ernsting, A. Nevsky, S. Schiller, Demonstration of a transportable 1 Hz-linewidth laser. Appl. Phys. B-Lasers Opt. 104(4), 741–745 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    X. Xu, T.H. Loftus, J.L. Hall, A. Gallagher, J. Ye, Cooling and trapping of atomic strontium. J. Opt. Soc. Am. B 20(5), 968–976 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    T.P. Dinneen, K.R. Vogel, E. Arimondo, J.L. Hall, A. Gallagher, Cold collisions of Sr*-Sr in a magneto-optical trap. Phys. Rev. A 59(2), 1216-1222 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami, Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82(6), 1116–1119 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    T.H. Loftus, T. Ido, M.M. Boyd, A.D. Ludlow, J. Ye, Narrow line cooling and momentum-space crystals. Phys. Rev. A 70(6), 063413 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    T. Akatsuka, M. Takamoto, H. Katori, Three-dimensional optical lattice clock with bosonic 88Sr atoms. Phys. Rev. A 81, 023402 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C. Lisdat, J.S.R. Vellore Winfred, T. Middelmann, F. Riehle, U. Sterr, Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. Phys. Rev. Lett. 103(9), 090801 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M.G. Tarallo, N. Poli, M. Schioppo, D. Sutyrin, G.M. Tino, A high-stability semiconductor laser system for a Sr-88-based optical lattice clock. Appl. Phys. B-Lasers Opt. 103(1), 17–25 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Taichenachev, V.I. Yudin, C.W. Oates, C.W. Hoyt, Z.W. Barber, L. Hollberg, Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    S. Blatt, J.W. Thomsen, G.K. Campbell, A.D. Ludlow, M.D. Swallows, M.J. Martin, M.M. Boyd, J. Ye, Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock. Phys. Rev. A 80, 052703 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    A. Brusch, R. Le Targat, X. Baillard, M. Fouché, P. Lemonde, Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett. 96, 103003 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A. Quessada, R.P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, P. Lemonde, The Dick effect for an optical frequency standard. J. Opt. B: Quantum Semiclass. Opt. 5, S150 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • N. Poli
    • 1
  • M. Schioppo
    • 1
    • 3
  • S. Vogt
    • 2
  • St. Falke
    • 2
    • 4
  • U. Sterr
    • 2
  • Ch. Lisdat
    • 2
  • G. M. Tino
    • 1
  1. 1.Dipartimento di Fisica e Astronomia and LENSUniversità di Firenze and INFN Sezione di FirenzeSesto FiorentinoItaly
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany
  3. 3.Time and Frequency DivisionNational Institute of Standards and TechnologyBoulderUSA
  4. 4.TOPTICA Photonics AGGräfelfingGermany

Personalised recommendations