Applied Physics B

, Volume 117, Issue 4, pp 1091–1097 | Cite as

BaCaF2/III–V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices

  • Anna Koeninger
  • Gerhard Boehm
  • Ralf Meyer
  • Markus-Christian Amann
Article

Abstract

Semiconductor devices such as vertical-cavity surface-emitting lasers (VCSELs) or semiconductor-saturable absorber mirrors (SESAMs) require high-reflection mirrors. Moreover, in VCSELs, it is beneficial to have a crystalline mirror, which is as thin as possible in order to ensure a high thermal conductivity for efficient heat-sinking of the laser. On the other hand, the wavelength tuning range of a SESAM is limited by the reflection bandwidth of its distributed Bragg reflector (DBR). Thus, broadband mirrors are preferable here. This paper reports a three-pair DBR grown by molecular beam epitaxy (MBE) using BaCaF2 and GaAs on a GaAs (100) substrate. Due to the high ratio in refractive indices of GaAs and the group-IIa-fluorides, high-reflectivity mirrors and wide bandwidths can be obtained with low total thicknesses. We also investigated growth and stability of the material BaCaF2, as well as its thermal conductivity both as single layer and Bragg reflector. Observed peeling of the layers could be avoided by implementing a fluorine treatment previous to the BaCaF2 growth.

References

  1. 1.
    S. Schön, M. Haiml, L. Gallmann, M. Achermann, U. Keller, in 2000 Proceedings Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD), pp. 503–510 (2000)Google Scholar
  2. 2.
    E.H.C. Parker, The Technology and Physics of Molecular Beam Epitaxy (ISBN: 0306418606, Springer, 1985)Google Scholar
  3. 3.
    M.-C. Amann, M. Müller, in 12th International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2010)Google Scholar
  4. 4.
    S. Schön, M. Haiml, U. Keller, Appl. Phys. Lett. 77(6), 782 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Shi, H. Zogg, U. Keller, J. Electron. Mater. 27(2), 55–58 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Shi, H. Zogg, P. Müller, I.D. Jung, U. Keller, Appl. Phys. Lett 69, 3474–3476 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    P.W. Sullivan, R.F.C. Farrow, G.R. Jones, J. Cryst. Growth 60(2), 403–413 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    H. Clemens, U. Stromberger, P.C. Weilguni, G. Bauer, J. Appl. Phys. 66(4), 1680 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    A.S. Jordan, J. Cryst. Growth 49(4), 631–642 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    P. Klocek, Handbook of Infrared Optical Materials (ISBN: 0824784685, Marcel Dekker Inc., New York, 1991)Google Scholar
  11. 11.
    S.S. Ballard, K.A. McCarthy, W.C. Davis, Rev. Sci. Instrum. 21, 905–907 (1950)ADSCrossRefGoogle Scholar
  12. 12.
    M. Haiml, M. Achermann, U. Keller, J. Vac. Sci. Technol. B 18(3), 1701–1705 (2000)CrossRefGoogle Scholar
  13. 13.
    Y. Yamada, M. Oshima, S. Maeyama, T. Kawamura, T. Miyahara, Appl. Surf. Sci. 33–34, 1073–1080 (1988)CrossRefGoogle Scholar
  14. 14.
    T. Waho, F. Yanagawa, Y. Yamada, J. Cryst. Growth 95(1–4), 415–420 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    A. Baldan, J. Mater. Sci. 37, 2171–2202 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    P.W. Voorhees, J. Stat. Phys. 38(1–2), 231–252 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press Inc., Boca Raton, FL, 2003)Google Scholar
  18. 18.
    H. Wada, T. Kamijoh, Jpn. J. Appl. Phys. 35, L648–L650 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    L.A. Coldren, S.W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, 1995)Google Scholar
  20. 20.
    S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd edn. (ISBN: 0471333727, Wiley, New York, 2001)Google Scholar
  21. 21.
    B. Schumann, H. Neumann, Cryst. Res. Technol. 19(1), K13–K14 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anna Koeninger
    • 1
  • Gerhard Boehm
    • 1
  • Ralf Meyer
    • 1
  • Markus-Christian Amann
    • 1
  1. 1.Lehrstuhl fuer Halbleitertechnologie E26, Walter Schottky InstitutTechnische Universitaet MuenchenGarchingGermany

Personalised recommendations