Applied Physics B

, Volume 117, Issue 4, pp 1001–1007 | Cite as

Laser-induced supersaturation and snow formation in a sub-saturated cloud chamber

  • Jingjing Ju
  • Tomas Leisner
  • Haiyi Sun
  • Aravindan Sridharan
  • Tie-Jun Wang
  • Jingwei Wang
  • Cheng Wang
  • Jiansheng Liu
  • Ruxin Li
  • Zhizhan Xu
  • See Leang Chin


Calculation of the saturation ratio inside vortices formed below the filament in a sub-saturation zone in a cloud chamber was given. By mixing the air with a large temperature gradient, supersaturation was sustained inside the vortices. This led to precipitation and snow formation when strong filaments were created using short focal length lenses (f = 20 and 30 cm). However, when longer filaments were formed with the same laser pulse energy but longer focal length lenses (f = 50 and 80 cm), only condensation (mist) was observed. The lack of precipitation was attributed to the weaker air flow, which was not strong enough to form strong vortices below the filament to sustain precipitation.


Vortex Cloud Droplet Cloud Condensation Nucleus Cold Plate Focal Length Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research work was supported in part by the following funding organizations: Natural Science and Engineering Research Council of Canada (NSERC), Canada Research Chairs, the Canada Foundation for Innovation, the Canadian Institute for Photonics Innovation, and le Fonds Québécois pour la Recherche sur la Nature et les Technologies (FQRNT), the National Basic Research Program of China (2011CB808100, 2010CB923203), National Natural Science Foundation of China (60921004, 11204329), Shanghai science and technology talent project (12XD1405200), the State Key Laboratory Program of Chinese Ministry of Science and Technology. TJW also acknowledges the support from 100 Talent Program of Chinese Academy Sciences and Shanghai Pujiang Program. Technical support from Mr. M. Martin of COPL, Laval University, is also acknowledged.


  1. 1.
    S.L. Chin, in Femtosecond Laser Filamentation. Series on Atomic, Optical and Plasma Physics, vol. 55 (Springer, New York, 2010)Google Scholar
  2. 2.
    S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, Can. J. Phys. 83, 863 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kasparian, J.-P. Wolf, Opt. Express 16, 466 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    V.P. Kandidov, S.A. Shlenov, O.G. Kosareva, Quantum Electron. 39, 205 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S.L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. Liu, T. Saideman, H. Zeng, M. Richardson, R. Li, Z. Xu, Laser Phys. 22, 1 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, L. Wöste, Science 301, 61 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S.L. Chin, Phys. Canada 60, 273 (2004)Google Scholar
  10. 10.
    J. Kasparian, R. Sauerbrey, S.L. Chin, Appl. Phys. B 71, 877 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Kosareva, V.P. Kandidov, Opt. Lett. 22, 304 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Y.-H. Cheng, J.K. Wahlstrand, N. Jhajj, H.M. Milchberg, Opt. Express 21, 4740 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W.M. Nakaema, Y. Petit, M. Queisser, R. Salam, E. Salmon, L. Wöste, J.-P. Wolf, Nat. Photon. 4, 451 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J. Kasparian, L. Wöste, J.-P. Wolf, Opt. Photon. News 21, 22 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Petit, S. Henin, J. Kasparian, J.-P. Wolf, Appl. Phys. Lett. 97, 021108 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Petit, S. Henin, J. Kasparian, J.-P. Wolf, P. Rohwetter, K. Stelmaszczyk, Z.Q. Hao, W.M. Nakaema, L. Wöste, A. Vogel, T. Pohl, K. Weber, Appl. Phys. Lett. 98, 041105 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z.Q. Hao, W.M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, J.-P. Wolf, Nat. Commun. 2, 456 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    P. Rohwetter, J. Kasparian, L. Wöste, J.-P. Wolf, J. Chem. Phys. 135, 134703 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J.-P. Wolf, L. Wöste, Atmos. Chem. Phys. 13, 4593 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    T. Leisner, D. Duft, O. Möhler, H. Saathoff, M. Schnaiter, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, Y. Petit, P. Rohwetter, J. Kasparian, J.-P. Wolf, L. Wöste, Proc. Natl. Acad. Sci. U.S.A. 110, 10106 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S.L. Chin, R. Li, Z. Xu, Opt. Lett. 37, 1214 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S.L. Chin, R. Li, Z. Xu, Appl. Phys. B 110, 375 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    H. Sun, J. Liu, C. Wang, J. Ju, Z. Wang, W. Wang, X. Ge, C. Li, S.L. Chin, R. Li, Z. Xu, Opt. Express 21, 9255 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A. Sridharan, T.-J. Wang, A. Grégoire, J. Ju, J. Liu, R. Li, Z. Xu, D. Boudreau, S.L. Chin, Laser Phys. Lett. 10, 125301 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ju, H. Sun, A. Sridharan, T.-J. Wang, C. Wang, J. Liu, R. Li, Z. Xu, S.L. Chin, Phys. Rev. E 88, 062803 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Shaw, J. Atmos. Sci. 57, 3452 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    D.M. Murphy, T. Koop, Q. J. R. Meteorol. Soc. 131, 1539 (2005)CrossRefGoogle Scholar
  28. 28.
    F. Théberge, W. Liu, P.T. Simard, A. Becker, S.L. Chin, Phys. Rev. E 74, 036406 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Pao K. Wang, Physics and Dynamics of Cloud and Precipitation (Cabridge University Press, UK, 2013)Google Scholar
  30. 30.
    W. Liu, F. Théberge, J.-F. Daigle, P.T. Simard, S.M. Sarifi, Y. Kamali, H.L. Xu, S.L. Chin, Appl. Phys. B 85, 55 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S.L. Chin, Y. Cheng, Z. Xu, Phys. Rev. A 84, 063819 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    B. Zeng, T.-J. Wang, S. Hosseini, Y. Cheng, Z. Xu, W. Liu, S.L. Chin, J. Opt. Soc. Am. B 29, 3226 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jingjing Ju
    • 1
    • 2
  • Tomas Leisner
    • 3
    • 4
  • Haiyi Sun
    • 2
  • Aravindan Sridharan
    • 1
  • Tie-Jun Wang
    • 1
    • 2
  • Jingwei Wang
    • 2
  • Cheng Wang
    • 2
  • Jiansheng Liu
    • 2
  • Ruxin Li
    • 2
  • Zhizhan Xu
    • 2
  • See Leang Chin
    • 1
  1. 1.Department of Physics, Engineering Physics and Optics and Center for Optics, Photonics and Laser (COPL)Laval UniversityQuebec CityCanada
  2. 2.State Key Lab of High Field Laser Physics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of ScienceShanghaiChina
  3. 3.Institute for Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institut für UmweltphysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations