Applied Physics B

, Volume 117, Issue 2, pp 737–747 | Cite as

Asymmetric orientational writing dependence on polarization and direction in Li2O–Nb2O5–SiO2 glass with femtosecond laser irradiation

  • Chaxing Fan
  • Bertrand Poumellec
  • Rudy Desmarchelier
  • Huidan Zeng
  • Bernard Bourguignon
  • Guorong Chen
  • Matthieu Lancry


Strong birefringence photo-induced by the femtosecond laser irradiation and a sensitivity to the orientation of the laser movement versus the laboratory reference (i.e., difference between rightward and leftward or between upward and downward) have been demonstrated in 32.5Li2O–27.5Nb2O5–40SiO2 glass. An asymmetry with the orientation of the laser scanning was firstly observed by one of the authors in 2003 in pure silica (Poumellec et al. in Opt Express 11:1070, 2003). Here, we show in addition that this asymmetric orientational sensitivity is dependent on the direction of laser polarization and the laser scanning (i.e., when the direction is horizontal or vertical). In particular, no asymmetric writing is detected when both laser scanning and polarization directions are vertical. These observations are not explained by the available model.


Refractive Index Change Pure Silica Laser Track Laser Polarization Writing Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been done in the frame of FLAG (Femtosecond Laser Application in Glasses) consortium project with the support of several organizations: the Agence Nationale pour la Recherche (ANR-09-BLAN-0172-01), the RTRA Triangle de la Physique (2008-056T), the FP7-PEOPLE-IIF FemtoNano 908582, Shanghai Leading Academic Discipline Project (No. B502), Shanghai Key Laboratory Project (08DZ2230500), the National Natural Science Foundation of China (NSFC51072052), the Natural Science Foundation of Shanghai (12ZR1407600), and the Fundamental Research Funds for the Central Universities (WD1014035).


  1. 1.
    B. Poumellec, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Express 11, 1070 (2003)CrossRefADSGoogle Scholar
  2. 2.
    P.G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, K. Hirao, Opt. Express 19, 20657 (2011)CrossRefADSGoogle Scholar
  3. 3.
    E. Bricchi, J.D. Mills, P.G. Kazansky, B.G. Klappauf, J.J. Baumberg, Opt. Lett. 27, 2200 (2002)CrossRefADSGoogle Scholar
  4. 4.
    W. Watanabe, T. Asano, K. Yamada, K. Itoh, J. Nishii, Opt. Lett. 28, 2491 (2003)CrossRefADSGoogle Scholar
  5. 5.
    G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, R. Stoian, Opt. Express 17, 9515 (2009)CrossRefADSGoogle Scholar
  6. 6.
    M. Beresna, P.G. Kazansky, Opt. Express 35, 1662 (2010)Google Scholar
  7. 7.
    Y. Shimotsuma, M. Sakakura, K. Miura, J. Qiu, P.G. Kazansky, K. Fujita, K. Hirao, J. Nanosci. Nanotechnol. 7, 94 (2007)Google Scholar
  8. 8.
    M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, P.G. Kazansky, Opt. Mater. Express 1, 711 (2011)CrossRefGoogle Scholar
  9. 9.
    B. Poumellec, M. Lancry, A. Chahid-Erraji, P.G. Kazansky, Opt. Mater. Express 1, 766 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)CrossRefADSGoogle Scholar
  11. 11.
    P.G. Kazansky, Y. Shimotsuma, J. Ceram. Soc. Jpn. 116, 1052 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Bricchi, B.G. Klappauf, P.G. Kazansky, Opt. Lett. 29, 119 (2004)CrossRefADSGoogle Scholar
  13. 13.
    J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec, Opt. Mater. Express 1, 998 (2011)CrossRefGoogle Scholar
  14. 14.
    V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovsky, E. Simova, R.S. Taylor, Opt. Lett. 29, 1312 (2004)CrossRefADSGoogle Scholar
  15. 15.
    C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, M. Lancry, J. Phys. Chem. C 116(4), 2647 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A 84, 47 (2006)CrossRefADSGoogle Scholar
  17. 17.
    C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, G. Chen, J. Laser Micro Nanoeng. 6, 158 (2011)CrossRefGoogle Scholar
  18. 18.
    P.G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, Appl. Phys. Lett. 90, 151120 (2007)CrossRefADSGoogle Scholar
  19. 19.
    B. Poumellec, M. Lancry, J.C. Poulin, S. Ani Joseph, Opt. Express 16, 18354 (2008)CrossRefADSGoogle Scholar
  20. 20.
    D.N. Vitek, E. Block, Y. Bellouard, D.E. Adams, S. Backus, D. Kleinfeld, C.G. Durfee, J.A. Squier, Opt. Express 18(24), 24673 (2010)CrossRefADSGoogle Scholar
  21. 21.
    E.N. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882 (1997)CrossRefADSGoogle Scholar
  22. 22.
    C.B. Schaffer, A.O. Jamison, E. Mazur, Appl. Phys. Lett. 84, 1441 (2004)CrossRefADSGoogle Scholar
  23. 23.
    K. Zhou, Z. Guo, W. Ding, S. Liu, Opt. Express 18, 13640 (2010)CrossRefADSGoogle Scholar
  24. 24.
    Y. Yonesaki, K. Miura, R. Araki, K. Fujita, K. Hirao, J. Non-Crystal Solids 351, 885 (2005)CrossRefADSGoogle Scholar
  25. 25.
    B. Poumellec, P. Niay, M. Douay, J.F. Bayon, J. Phys. D Appl. Phys. 29, 1842 (1996)CrossRefADSGoogle Scholar
  26. 26.
    M. Lancry, E. Regnier, B. Poumellec, Prog. Mater. Sci. 57, 63 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Le Parc, C. Levelut, J. Pelous, V. Martinez, B. Champagnon, J. Phys. Condens. Matter 18, 7507 (2006)CrossRefADSGoogle Scholar
  28. 28.
    R.W. Davidge, T.J. Green, J. Mater. Sci. 3, 629 (1968)CrossRefADSGoogle Scholar
  29. 29.
    F.C. Serbena, E.D. Zanotto, Internal residual stresses in glass-ceramics: a review. J. Non-Crystal. Solids 358, 975–984 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Vigouroux, Etude de vitrocéramique pour le doublrement de fréquence, Thésis N° 4627 (Bordeaux, France, 2012)Google Scholar
  31. 31.
    B. Poumellec, M. Lancry, R. Desmarchelier, E. Herve, F. Brisset, J.C. Poulin, Asymmetric orientational writing in glass with femtosecond laser irradiation. Opt. Mater. Express 3(10), 1586–1599 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Richter, C. Miese, S. Döring, F. Zimmermann, M.J. Withford, A. Tünnermann, S. Nolte, Laser induced nanogratings beyond fused silica—periodic nanostructures in borosilicate glasses and ULETM. Opt. Mater. Express 3(10), 1161–1166 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chaxing Fan
    • 1
    • 2
  • Bertrand Poumellec
    • 2
  • Rudy Desmarchelier
    • 2
  • Huidan Zeng
    • 1
  • Bernard Bourguignon
    • 3
  • Guorong Chen
    • 1
  • Matthieu Lancry
    • 2
  1. 1.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR CNRS-PSUD, 8182 Bâtiment 410Université de Paris Sud 11OrsayFrance
  3. 3.Institut des Sciences Moléculaires d’Orsay, UPR CNRS 3361, Bâtiment 350Université de Paris Sud 11OrsayFrance

Personalised recommendations