Applied Physics B

, Volume 117, Issue 2, pp 689–698 | Cite as

Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy

  • R. M. Spearrin
  • C. S. Goldenstein
  • I. A. Schultz
  • J. B. Jeffries
  • R. K. Hanson


A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4–5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene–air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.


Carbon Oxide Quantum Cascade Laser Wavelength Modulation Spectroscopy Scramjet Combustor Combustion Progress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored by the National Center for Hypersonic Combined Cycle Propulsion (NCHCCP), Grant FA 9550-09-1-0611, with technical monitors Chiping Li (AFOSR) and Rick Gaffney (NASA). The authors would also like to thank Bob Rockwell, Brian Rice, and Roger Reynolds of the University of Virginia for their assistance in operating the UVaSCF facility.


  1. 1.
    J.M. Tishkoff, J.P. Drummond, T. Edwards, A.S. Nejad, in Future Directions of Supersonic Combustion ResearchAir Force/NASA Workshop on Supersonic Combustion. 35th Aerospace Sciences Meeting and Exhibit (1997)Google Scholar
  2. 2.
    G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, C. Carter, Diode laser-based detection of combustor instabilities with application to a scramjet engine. Proc. Combust. Inst. 32, 831–838 (2009)CrossRefGoogle Scholar
  3. 3.
    J.T.C. Liu, G.B. Rieker, J.B. Jeffries, M.R. Gruber, C.D. Carter, T. Mathur, R.K. Hanson, Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44, 6701 (2005)CrossRefADSGoogle Scholar
  4. 4.
    F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang, Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl. Opt. 50, 6697–6707 (2011)CrossRefADSGoogle Scholar
  5. 5.
    A. Griffiths, A. Houwing, Diode laser absorption spectroscopy of water vapor in a scramjet combustor. Appl. Opt. 44, 6653–6659 (2005)CrossRefADSGoogle Scholar
  6. 6.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Opt. Lett. 23, 219 (1998)CrossRefADSGoogle Scholar
  8. 8.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)CrossRefADSGoogle Scholar
  9. 9.
    R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy. Appl. Opt. 53, 1938–1946 (2014)CrossRefADSGoogle Scholar
  10. 10.
    R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B (2014). doi: 10.1007/s00340-014-5772-7
  11. 11.
    L. Rosenmann, S. Langlois, C. Delaye, J. Taine, Diode laser measurements of CO2 line intensities at high temperature in the 4.3 μm region. J. Mol. Spectrosc. 149, 167–184 (1991)CrossRefADSGoogle Scholar
  12. 12.
    P.L. Varghese, R.K. Hanson, Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature. J. Quant. Spectrosc. Radiat. Transf. 24, 479–489 (1980)CrossRefADSGoogle Scholar
  13. 13.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459–1468 (2003)CrossRefADSGoogle Scholar
  14. 14.
    U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2008), p. 597Google Scholar
  15. 15.
    C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53, 356–367 (2014)CrossRefADSGoogle Scholar
  16. 16.
    C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 52, 7950–7962 (2013)CrossRefADSGoogle Scholar
  17. 17.
    X. Ouyang, P.L. Varghese, Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers. Appl. Opt. 28, 3979–3984 (1989)CrossRefADSGoogle Scholar
  18. 18.
    S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson, Diode-laser absorption sensor for line-of-sight gas temperature distributions. Appl. Opt. 40, 4404 (2001)CrossRefADSGoogle Scholar
  19. 19.
    L. Ma, X. Li, S.T. Sanders, A.W. Caswell, S. Roy, D.H. Plemmons, J.R. Gord, 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt. Express 21, 1152–1162 (2013)CrossRefADSGoogle Scholar
  20. 20.
    J.C. McDaniel, C.P. Goyne, E.B. Bryner, D.B. Le, C.T. Smith, R.H. Krauss, in Dual-Mode Scramjet Operation at a Mach 5 Flight Enthalpy in a Clean Air Test Facility. AIP Conference Proceedings, vol. 762 (AIP, 2005), pp. 1277–1282Google Scholar
  21. 21.
    M. Gruber, J. Donbar, Mixing and combustion studies using cavity-based flameholders in a supersonic flow. J. Propuls. Power 20, 769–778 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Ben-Yakar, R. Hanson, Cavity flame-holders for ignition and flame stabilization in scramjets: an overview. J. Propuls. Power 17, 869–877 (2001)CrossRefGoogle Scholar
  23. 23.
    C.S. Goldenstein, I.A. Schultz, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Scanned-wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Appl. Phys. B (2013). doi: 10.1007/s00340-013-5755-0
  24. 24.
    I.A. Schultz, C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Propuls. Power (2014) (accepted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. M. Spearrin
    • 1
  • C. S. Goldenstein
    • 1
  • I. A. Schultz
    • 1
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations