Advertisement

Applied Physics B

, Volume 117, Issue 2, pp 519–526 | Cite as

Measurements of carbon monoxide mixing ratios in Houston using a compact high-power CW DFB-QCL-based QEPAS sensor

  • Przemysław Stefański
  • Rafał Lewicki
  • Nancy P. Sanchez
  • Jan Tarka
  • Robert J. Griffin
  • Manijeh Razeghi
  • Frank K. Tittel
Article

Abstract

Measurements of carbon monoxide (CO) mixing ratios in Houston, Texas, during the period from May 16, 2013 to May 28, 2013 were performed using a sensitive, selective, compact, and portable quartz-enhanced photoacoustic spectroscopy (QEPAS)-based CO sensor employing a high-power continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL). The minimum detectable CO concentration was 3 ppbv for the strong, interference-free R(6) absorption line at 2,169.2 cm−1 and a 5 s data acquisition time. The average CO concentration during the measurement period was 299.1 ± 81.4 ppb with observed minimum and maximum values of 210.5 and 4,307.9 ppb, respectively. A commercially available electrochemical sensor was employed in-line for simultaneous measurements to confirm the response of the CW DFB-QCL-based QEPAS sensor to variations of the CO mixing ratios. Moderate agreement (R 2 = 0.7) was found between both sets of CO measurements.

Keywords

Continuous Wave Modulation Depth Control Electronics Unit Quartz Tuning Fork QEPAS Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Rice University group acknowledges financial support from a National Science Foundation (NSF) Grant EEC-0540832 entitled “Mid-Infrared Technologies for Health and the Environment (MIRTHE)”, a NSF-ANR award for international collaboration in chemistry “Next generation of Compact Infrared Laser based Sensor for environmental monitoring (NexCILAS)” and the Robert Welch Foundation Grant C-0586.

References

  1. 1.
    M.A.K. Khalil, R.A. Rasmussen, Chemosphere 20, 227 (1990)CrossRefGoogle Scholar
  2. 2.
    J.A. Logan et al., J. Geophys. Res. 86, 7210 (1981)CrossRefADSGoogle Scholar
  3. 3.
    K.S. Law, Chemosphere Glob. Change Sci. 1, 263 (1999)CrossRefGoogle Scholar
  4. 4.
    C. Zellweger et al., Atmos. Chem. Phys. 9, 3491 (2009)CrossRefADSGoogle Scholar
  5. 5.
    L.K. Weaver, N. Engl. J. Med. 360, 1217 (2009)CrossRefGoogle Scholar
  6. 6.
    An introduction to indoor air quality (IAQ). Carbon monoxide (CO). http://www.epa.gov/iaq/co.html#Sources, United States Environmental Protection Agency, Web., Cited: 07/03/2013
  7. 7.
    A.A. Kosterev et al., Opt. Lett. 27, 21 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72, 1937 (2001)CrossRefADSGoogle Scholar
  9. 9.
    R. Lewicki et al, in The wonder of nanotechnology: quantum optoelectronic devices and applications, Chapter. 23, eds by M. Razeghi, L. Esaki, K.V. Klitzing, (SPIE Press, 2013), pp. 597–632Google Scholar
  10. 10.
    N. Petra et al., Appl. Phys. B 94, 673 (2009)CrossRefADSGoogle Scholar
  11. 11.
    Y. Ma et al., Opt. Express 21, 11338 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Q.Y. Lu et al., Appl. Phys. Lett. 97, 04210 (2010)Google Scholar
  13. 13.
    A.A. Kosterev, T.S. Mosely, F.K. Tittel, Appl. Phys. B 85, 295 (2006)CrossRefADSGoogle Scholar
  14. 14.
    G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 85, 301 (2006)CrossRefADSGoogle Scholar
  15. 15.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133 (2005)CrossRefADSGoogle Scholar
  16. 16.
    University of Houston Moody Tower (UH-MT), www5.tceq.texas.gov/tamis/index.cfm?fuseaction=report.view_site&CAMS=695, Texas Commision on Environmental Quality, Web, Cited: 7/03/2013
  17. 17.
    W.T. Luke et al., Atmos. Environ. 44, 4068 (2010)CrossRefADSGoogle Scholar
  18. 18.
    L. Gong et al., Atmos. Chem. Phys. Discuss. 11, 9721 (2011)CrossRefADSGoogle Scholar
  19. 19.
    S.E. Bauman et al., Atmos. Environ. 16, 2489 (1982)CrossRefADSGoogle Scholar
  20. 20.
    Y. Qin, S.C. Kot, Atmos. Environ. B Urb. 27, 3 (1993)Google Scholar
  21. 21.
    M. Väkevä et al., Atmos. Environ. 33, 1385 (1999)CrossRefGoogle Scholar
  22. 22.
    N.M. Zoumakis, Atmos. Environ. 29, 3719 (1995)CrossRefADSGoogle Scholar
  23. 23.
    A. Bigi, R.M. Harrison, Atmos. Environ. 44, 2004 (2010)CrossRefADSGoogle Scholar
  24. 24.
    M. Rubio et al., Environ. Monit. Assess. 140, 161 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Przemysław Stefański
    • 1
    • 4
  • Rafał Lewicki
    • 1
  • Nancy P. Sanchez
    • 2
  • Jan Tarka
    • 1
    • 4
  • Robert J. Griffin
    • 2
  • Manijeh Razeghi
    • 3
  • Frank K. Tittel
    • 1
  1. 1.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  2. 2.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA
  3. 3.Department of Electrical Engineering and Computer Science, Center for Quantum DevicesNorthwestern UniversityEvanstonUSA
  4. 4.Laser and Fiber Electronics GroupWroclaw University of TechnologyWroclawPoland

Personalised recommendations