Applied Physics B

, Volume 117, Issue 1, pp 445–451 | Cite as

QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells

  • M. Köhring
  • S. Huang
  • M. Jahjah
  • W. Jiang
  • W. Ren
  • U. Willer
  • C. Caneba
  • L. Yang
  • D. Nagrath
  • W. Schade
  • F. K. Tittel
Article

Abstract

The development of a sensitive sensor for detecting nitric oxide (NO) emissions from biological samples is reported. The sensor is based on tunable diode laser absorption spectroscopy (TDLAS) using a continuous wave, thermoelectrically cooled quantum cascade laser (QCL) and a 100-m astigmatic Herriot cell. A 2f-wavelength modulation spectroscopy technique was used to obtain QCL-based TDLAS NO emission measurements with an optimum signal-to-noise ratio. An absorption line at 1,900.076 cm−1 was targeted to measure NO with a minimum detection limit of 124 ppt. Positive control measurements with the NO donor DETA NONOate were performed to determine and optimize the sensor performance for measurements of biological samples. Our measurements with NO donor show the potential suitability of the sensor for monitoring NO emission from cancer cells for biological investigations.

References

  1. 1.
    D. Fukumura, S. Kashiwagi, R.K. Jain, Nat. Rev. Cancer 6, 521 (2006)CrossRefGoogle Scholar
  2. 2.
    W. Xu, L.Z. Liu, M. Loizidou, M. Ahmed, I.G. Charles, Cell Res. 12, 311 (2002)CrossRefGoogle Scholar
  3. 3.
    R. SoRelle, Circulation 98, 2365 (1998)CrossRefGoogle Scholar
  4. 4.
    L. Thomsen, D. Miles, Cancer Metastasis Rev. 17, 107–118 (1998)CrossRefGoogle Scholar
  5. 5.
    A.J. Hobbs, A. Higgs, S. Moncada, Annu. Rev. Pharmacol. Toxicol. 39, 191 (1999)CrossRefGoogle Scholar
  6. 6.
    S. Mocellin, V. Bronte, D. Nitti, Med. Res. Rev. 27, 317 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Huerta, S. Chilka, B. Bona Vida, Int. J. Oncol. 33, 909 (1992)Google Scholar
  8. 8.
    American Cancer Society, Cancer facts and figures 2014 (American Cancer Society, Atlanta), www.cancer.org
  9. 9.
    C.A. Caneba, N. Bellance, L. Yang, L. Pabst, D. Nagrath, Am. J. Physiol. Endocrinol. Metab. 303, E1036 (2012)CrossRefGoogle Scholar
  10. 10.
    S.A. Cannistra, N. Engl. J. Med. 351, 2519–2529 (2004)CrossRefGoogle Scholar
  11. 11.
    R.C. Bast Jr., B. Hennessy, G.B. Mills, Nat. Rev. Cancer 9, 415–428 (2009)CrossRefGoogle Scholar
  12. 12.
    L.L. Thomsen, F.G. Lawton, R.G. Knowles, J.E. Beesley, V. Riveros-Moreno, S. Moncada, Cancer Res. 54, 1352–1354 (1994)Google Scholar
  13. 13.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)CrossRefADSGoogle Scholar
  14. 14.
    C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Robert.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)CrossRefADSGoogle Scholar
  16. 16.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. Curl, Appl. Phys. B 90, 165 (2008)CrossRefADSGoogle Scholar
  17. 17.
    S. Barbieri, J.-P. Pellaux, E. Studemann, D. Rosset, Rev. Sci. Instrum. 73, 2458 (2002)CrossRefADSGoogle Scholar
  18. 18.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys B. 75, 343–350 (2002)CrossRefADSGoogle Scholar
  19. 19.
    J.B. McManus, J.H. Shorter, D.D. Nelson, M.S. Zahniser, D.E. Glenn, R.M. McGovern, Appl. Phys. B 92, 387 (2008)CrossRefADSGoogle Scholar
  20. 20.
    J.B. McManus, M.S. Zahniser, D.D. Nelson, Appl. Opt. 50, A74 (2011)CrossRefADSGoogle Scholar
  21. 21.
    R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, Opt. Express 15, 7357 (2007)CrossRefADSGoogle Scholar
  22. 22.
    S. Schilt, L. Thévenaz, P. Robert, Appl. Opt. 42, 6728 (2003)CrossRefADSGoogle Scholar
  23. 23.
    S. Schilt, L. Thévenaz, Infrared Phys. Technol. 48, 154 (2006)CrossRefADSGoogle Scholar
  24. 24.
    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B. 57, 131 (1993)CrossRefADSGoogle Scholar
  25. 25.
    J.A. Hrabie, J.R. Klose, D.A. Wink, L.K. Keefer, J. Org. Chem. 58, 1472 (1993)CrossRefGoogle Scholar
  26. 26.
    L.K. Keefer, R.W. Nims, K.M. Davies, D.A. Wink, “NONOates” as nitric oxide donors: convenient nitric oxide dosage forms, in Nitric Oxide Part A: Sources and Detection of NO; NO Synthase, ed. by L. Packer (Academic Press, New York, 1996)Google Scholar
  27. 27.
    GE Water & Process Technologies, Analytical Instruments, Boulder, CO, www.geinstruments.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Köhring
    • 1
    • 2
  • S. Huang
    • 1
    • 3
  • M. Jahjah
    • 1
  • W. Jiang
    • 1
  • W. Ren
    • 1
  • U. Willer
    • 4
  • C. Caneba
    • 1
  • L. Yang
    • 1
  • D. Nagrath
    • 1
  • W. Schade
    • 2
  • F. K. Tittel
    • 1
  1. 1.Rice UniversityHoustonUSA
  2. 2.Fraunhofer Heinrich-Hertz-InstituteGoslarGermany
  3. 3.Princeton UniversityPrincetonUSA
  4. 4.EFZNClausthal University of TechnologyGoslarGermany

Personalised recommendations