Applied Physics B

, Volume 117, Issue 1, pp 401–410 | Cite as

20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

  • V. A. Miller
  • V. A. Troutman
  • M. G. Mungal
  • R. K. Hanson


This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8–0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.


Detonation Wave Mach Disk Expansion Tube PLIF Imaging High Acquisition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



V. A. Miller is supported by the Claudia and William Coleman Foundation Stanford Graduate Fellowship; V. A. Troutman is supported by the Gabilan Stanford Graduate Fellowship. This work is made possible by the Air Force Office of Scientific Research (AFOSR) with Dr. Chiping Li as technical monitor.

Supplementary material

340_2014_5849_MOESM1_ESM.mp4 (4 mb)
Supplementary material 1 (mp4 4131 KB)


  1. 1.
    T. Fric, A. Roshko, J. Fluid Mech. 279(1) (1994). doi: 10.1017/S0022112094003800
  2. 2.
    S.H. Smith, M.G. Mungal, J. Fluid Mech. 357, 83 (1998). doi: 10.1017/S0022112097007891 CrossRefADSGoogle Scholar
  3. 3.
    A.R. Karagozian, Prog. Energy Combus. Sci. 36(5), 531 (2010). doi: 10.1016/j.pecs.2010.01.001
  4. 4.
    K. Mahesh, Annu. Rev. Fluid Mech. 45(1), 379 (2013). doi: 10.1146/annurev-fluid-120710-101115 MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    C. Nordeen, D. Schwer, F. Schauer, J. Hoke, T. Barber, C. Baki, in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA 2011–6045, San Diego, California, 2011), pp. 1–17. doi: 10.2514/6.2011-6045
  6. 6.
    G. Kychakoff, R.D. Howe, R.K. Hanson, Appl. Opt. 23(5), 704 (1984)CrossRefADSGoogle Scholar
  7. 7.
    B.K. McMillin, J.M. Seitzman, R.K. Hanson, AIAA J. 32(10) (1994). doi: 10.2514/3.12237
  8. 8.
    K. Kohse-Höinghaus, J.B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, London, 2002)Google Scholar
  9. 9.
    D.A. Rothamer, J.A. Snyder, R.K. Hanson, R.R. Steeper, Appl. Phys. B 99(1–2), 371 (2009). doi: 10.1007/s00340-009-3815-2 ADSGoogle Scholar
  10. 10.
    B.J. Kirby, B.K. Hanson, Proc. Combust. Inst. 28(1), 253 (2000). doi: 10.1016/S0082-0784(00)80218-0 CrossRefGoogle Scholar
  11. 11.
    M. Tanahashi, S. Murakami, G.M. Choi, Y. Fukuchi, T. Miyauchi, Proc. Combus. Inst. 30(1), 1665 (2005). doi: 10.1016/j.proci.2004.08.270
  12. 12.
    C.C. Rasmussen, S.K. Dhanuka, J.F. Driscoll, Proc. Combust. Inst. 31(2), 2505 (2007). doi: 10.1016/j.proci.2006.08.007
  13. 13.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004). doi: 10.1039/b400997e
  14. 14.
    J. Yoo, D. Mitchell, D.F. Davidson, R.K. Hanson, Exp. Fluids 45, 751 (2010). doi: 10.1007/s00348-010-0876-2 CrossRefGoogle Scholar
  15. 15.
    J. Yoo, D. Mitchell, D.F. Davidson, R. Hanson, Shock Waves 21(6), 523 (2011). doi: 10.1007/s00193-011-0338-7 CrossRefADSGoogle Scholar
  16. 16.
    A. Lozano, S.H. Smith, M.G. Mungal, R.K. Hanson, AIAA J. Tech. Notes 32(1), 218 (1993)CrossRefADSGoogle Scholar
  17. 17.
    N. Jiang, J. Bruzzese, R. Patton, J. Sutton, R. Yentsch, D.V. Gaitonde, W.R. Lempert, J.D. Miller, T.R. Meyer, R. Parker, T. Wadham, M. Holden, P.M. Danehy, Exp. Fluids 53(6), 1637 (2012). doi: 10.1007/s00348-012-1381-6 CrossRefGoogle Scholar
  18. 18.
    B. Peterson, V. Sick, Appl. Phys. B 97(4), 887 (2009). doi: 10.1007/s00340-009-3620-y CrossRefADSGoogle Scholar
  19. 19.
    R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96(4), 745 (2009). doi: 10.1007/s00340-009-3637-2
  20. 20.
    M. Cundy, P. Trunk, A. Dreizler, V. Sick, Exp. Fluids 51(5), 1169 (2011)CrossRefGoogle Scholar
  21. 21.
    B. Peterson, E. Baum, B. Böhm, V. Sick, A. Dreizler, Proc. Combus. Inst. 34(2), 3653 (2013). doi: 10.1016/j.proci.2012.05.051
  22. 22.
    V.A. Miller, M. Gamba, M.G. Mungal, R.K. Hanson, Exp. Fluids 54(6), 1539 (2013). doi: 10.1007/s00348-013-1539-x CrossRefGoogle Scholar
  23. 23.
    M. Gamba, V.A. Miller, M.G. Mungal, in Turbulence Shear Flow Phenomena (Poitiers, France, 2013)Google Scholar
  24. 24.
    B.H. Cheung, R.K. Hanson, Appl. Phys. B 98, 581 (2010)CrossRefADSGoogle Scholar
  25. 25.
    M. Gamba, R.K. Hanson, in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, Portugal, 2012)Google Scholar
  26. 26.
    N. Jiang, W.R. Lempert, Opt. Lett. 33(19), 2236 (2008)Google Scholar
  27. 27.
    N. Jiang, W.R. Lempert, G.L. Switzer, T.R. Meyer, J.R. Gord, Appl. Opt. 47(1), 64 (2008)Google Scholar
  28. 28.
    R.L. Trimpi, A Preliminary Theoretical Study of the Expansion Tube, a New Device for Producing High-Enthalpy Short-Duration Hypersonic Gas Flows. Technical Report (NASA, 1962)Google Scholar
  29. 29.
    S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383(1–3), 6 (2011). doi: 10.1016/j.chemphys.2011.03.013
  30. 30.
    J.A. Snyder, Development and Application of Tracer-Based Planar Laser-Induced Fluorescence Imaging Diagnostics for HCCI Engines. Ph.D. thesis, (Stanford University, 2010)Google Scholar
  31. 31.
    V.A. Miller, Exp. Fluids 54(7), 1566 (2013). doi: 10.1007/s00348-013-1566-7 CrossRefGoogle Scholar
  32. 32.
    E. Kristensson, M. Richter, S. Pettersson, Appl. Opt. 47(21), 3927 (2008)Google Scholar
  33. 33.
    E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, Appl. Phys. B 109(4), 683 (2012). doi: 10.1007/s00340-012-5237-9 CrossRefADSGoogle Scholar
  34. 34.
    W.N. Heltsley, J.A. Snyder, A.J. Houle, D.F. Davidson, M.G. Mungal, R.K. Hanson, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Sacramento, California, 2006), AIAA-2006-4443Google Scholar
  35. 35.
    P. Hoess, K. Fleder, in 24th International Congress on High-Speed Photography and Photonics, Proceedings of SPIE, vol. 4183 (2001), p. 127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. A. Miller
    • 1
  • V. A. Troutman
    • 1
  • M. G. Mungal
    • 1
    • 2
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics LabStanford UniversityStanfordUSA
  2. 2.School of EngineeringSanta Clara UniversitySanta ClaraUSA

Personalised recommendations