Advertisement

Applied Physics B

, Volume 117, Issue 1, pp 271–278 | Cite as

Dynamics of self-organized aggregation of resonant nanoparticles in a laser field

  • V. V. Slabko
  • A. S. Tsipotan
  • A. S. AleksandrovskyEmail author
  • E. A. Slyusareva
Article

Abstract

Self-organized aggregation of nanoparticles in external resonant laser field is considered using Brownian dynamics model. Formation probabilities are calculated for the pair of particles in dependence on laser wavelength and mutual orientation of particles. Times required for aggregation are calculated. Possibility of efficient aggregation using pulsed laser is deduced.

Keywords

Laser Field Interparticle Distance Resonant Wavelength Brownian Dynamic Induce Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is partially supported by Grant of the Ministry of Education and Science of the Russian Federation for Siberian Federal University, by SB RAS Grant 24.31, and by RFBR Research Project No. 14-02-00219 A.

References

  1. 1.
    J.D. Boor, D.K. Kim, V. Schmidt, Opt. Lett. 35(20), 3450–3452 (2010)CrossRefADSGoogle Scholar
  2. 2.
    L. Li, M.H. Hong, M. Schmidt, M.L. Zhong, A. Malshe, B.H. In’tVeld, V. Kovalenko, Cirp Ann. Manufactur Technol 60(2), 735–755 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, H. Misawa, Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008)CrossRefGoogle Scholar
  4. 4.
    M.M. Mahlambi, A.K. Mishra, S.B. Mishra, A.M. Raichur, B.B. Mamba, R.W. Krause, J. Nanomater. 2012, Article ID 302046 (2012)Google Scholar
  5. 5.
    P. Akcora, H. Liu, S.K. Kumar, J. Moll, Y. Li, B.C. Benicewicz, L.S. Schadler, D. Acehan, A.Z. Panagiotopoulos, V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, J.F. Douglas, Nat. Mater. 8(4), 354–359 (2009)CrossRefADSGoogle Scholar
  6. 6.
    A.K. Boal, F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, V.M. Rotello, Nature 404(6779), 746–748 (2000)CrossRefADSGoogle Scholar
  7. 7.
    S. Kinge, M. Crego-Calama, D.N. Reinhoudt, ChemPhysChem 9(1), 20–42 (2008)CrossRefGoogle Scholar
  8. 8.
    K.-J. Noh, H.-J. Oh, B.-R. Kim, S.-C. Jung,W. Kang, S.-J. Kim. J. Nanomater. 2012, Article ID 475430 (2012)Google Scholar
  9. 9.
    J. Gong, G. Li, Z. Tang, Nano Today 7(6), 564–585 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Klajn, K.J.M. Bishop, B.A. Grzybowski, Proc. Natl. Acad. Sci. USA 104, 10305 (2007)CrossRefADSGoogle Scholar
  11. 11.
    T. Iida, H. Ishihara, Phys. Rev. Lett. 90(5), 057403 (2003)CrossRefADSGoogle Scholar
  12. 12.
    J.T. Bahns, S.K.R.S. Sankaranarayanan, S.K. Gray, L. Chen, Phys. Rev. Lett. 106(9), 095501 (2011)CrossRefADSGoogle Scholar
  13. 13.
    S. Srivastava, A. Santos, K. Critchley, K. Kim, P. Podsiadlo, K. Sun, J. Lee, C. Xu, G.D. Lilly, S.C. Glotzer, N.A. Kotov, Science 327(5971), 1355–1359 (2010)CrossRefADSGoogle Scholar
  14. 14.
    J. Rodriguez, L.C. Davila Romero, D.L. Andrews, Phys. Rev. A 78(4), 043805 (2008)CrossRefADSGoogle Scholar
  15. 15.
    J. Park, W. Lu, Phys. Rev. E 83(3), 031402 (2011)CrossRefADSGoogle Scholar
  16. 16.
    T. Iida, H. Ishihara, Phys. Rev. B 77(24), 245319 (2008)CrossRefADSGoogle Scholar
  17. 17.
    N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, Appl. Phys. B 112, 587–592 (2013)CrossRefADSGoogle Scholar
  18. 18.
    V.V. Slabko, A.S. Tsipotan, A.S. Aleksandrovsky, Photon. Nanostruct. Fund. Appl. 10(4), 636–643 (2012)CrossRefADSGoogle Scholar
  19. 19.
    V.V. Slabko, A.S. Tsipotan, A.S. Aleksandrovsky, Quant. Electron. 43(5), 458–462 (2013)CrossRefADSGoogle Scholar
  20. 20.
    A.L. Rogach (ed.), Semiconductor nanocrystal quantum dots (Springer, Wien, 2008)Google Scholar
  21. 21.
    S.V. Karpov, A.L. Bas’ko, A.K. Popov, V.V. Slabko, Opt. Spectrosc. 95(2), 241–247 (2003)CrossRefADSGoogle Scholar
  22. 22.
    N.E. Lyamkina, G.A. Chiganova, V.V. Slabko, A.M. Vorotynov, M.A. Taranova, Inorg. Mat. 41(8), 830–835 (2005)CrossRefGoogle Scholar
  23. 23.
    V.V. Slabko, S.V. Karpov, V.I. Zaitsev et al., J. Phys. Condens. Matt. 5(39), 7231–7238 (1993)CrossRefADSGoogle Scholar
  24. 24.
    A.R. Studart, E. Amstad, L.J. Gauckler, Langmuir 23(3), 1081–1090 (2007)CrossRefGoogle Scholar
  25. 25.
    S.V. Karpov, I.L. Isaev, A.P. Gavrilyuk, V.S. Gerasimov, A.S. Grachev, Colloid J. 71(3), 313–328 (2009)CrossRefGoogle Scholar
  26. 26.
    S.V. Karpov, V.V. Slabko, G.A. Chiganova, Colloid J. 64(4), 425–441 (2002)CrossRefGoogle Scholar
  27. 27.
    S.V. Karpov, A.K. Popov, V.V. Slabko, JETP Lett. 66(2), 106–110 (1997)CrossRefADSGoogle Scholar
  28. 28.
    V.A. Markel, V.M. Shalaev, E.B. Stechel, W. Kim, R.L. Armstrong, Phys. Rev. B 53(5), 2425–2436 (1996)CrossRefADSGoogle Scholar
  29. 29.
    L. Zhao, K.L. Kelly, G.C. Schatz, J. Phys. Chem. B 107, 7343–7350 (2003)CrossRefGoogle Scholar
  30. 30.
    I.S. Bouhaik, P. Leroy, P. Ollivier, M. Azaroual, L. Mercury, J. Colloid. Interf. Sci. 406, 75–85 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. V. Slabko
    • 1
  • A. S. Tsipotan
    • 1
  • A. S. Aleksandrovsky
    • 1
    • 2
    Email author
  • E. A. Slyusareva
    • 1
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.L.V. Kirensky Institute of PhysicsKrasnoyarskRussia

Personalised recommendations