Applied Physics B

, Volume 117, Issue 1, pp 203–209 | Cite as

Linewidth of collimated wavelength-converted emission in Rb vapour

  • Alexander Akulshin
  • Christopher Perrella
  • Gar-Wing Truong
  • Andre Luiten
  • Dmitry Budker
  • Russell McLean


We present a study of the spectral linewidth of collimated blue light (CBL) that results from wave mixing of low-power continuous-wave laser radiation at 780 and 776 nm and an internally generated mid-IR field at 5.23 μm in Rb vapour. Using a high-finesse Fabry–Perot interferometer, the spectral width of the CBL is found to be <1.3 MHz for a wide range of experimental conditions. We demonstrate using frequency-modulated laser light that the CBL linewidth is mainly limited by the temporal coherence of the applied laser fields rather than the atom–light interaction itself. The obtained result allows the same 1.3 MHz upper limit to be set for the linewidth of the collimated mid-IR radiation at 5.23 μm, which has not been directly detected.


Atomic Medium Laser Linewidth Transmission Resonance Atom Number Density Laser Guide Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the ARC Centre of Excellence for Quantum Atom Optics. A.L., C.P. and G.W.T. thank the ARC for supporting this research through the DP0877938 and FT0990301 research Grants. Also A.L. and C.P. acknowledge support by the South Australian Government through the Premier’s Science and Research Fund. D.B. is grateful to the Centre for Quantum and Optical Science at the Swinburne University of Technology for hosting him as a Distinguished Visiting Researcher.


  1. 1.
    D.C. Hanna, M.A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, vol. 17 (Springer, Berlin, 1979). Springer series in Optical SciencesGoogle Scholar
  2. 2.
    T. Efthimiopoulos, M.E. Movsessian, M. Katharakis, N. Merlemis, J. Appl. Phys. 80, 639 (1996) and references thereinCrossRefADSGoogle Scholar
  3. 3.
    A.S. Zibrov, M.D. Lukin, L. Hollberg, M.O. Scully, Phys. Rev. A 65(5), 051801 (2002)CrossRefADSGoogle Scholar
  4. 4.
    T. Meijer, J.D. White, B. Smeets, M. Jeppesen, R.E. Scholten, Opt. Lett. 31(7), 1002 (2006)CrossRefADSGoogle Scholar
  5. 5.
    A.M. Akulshin, R.J. McLean, A.I. Sidorov, P. Hannaford, Opt. Express 17, 22861 (2009)CrossRefADSGoogle Scholar
  6. 6.
    J.T. Schultz, S. Abend, D. Döring, J.E. Debs, P.A. Altin, J.D. White, N.P. Robins, J.D. Close, Opt. Lett. 34, 2321 (2009)CrossRefADSGoogle Scholar
  7. 7.
    A. Vernier, S. Franke-Arnold, E. Riis, A.S. Arnold, Opt. Express 18, 17026 (2010)CrossRefADSGoogle Scholar
  8. 8.
    G. Walker, A.S. Arnold, S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012)CrossRefADSGoogle Scholar
  9. 9.
    J.F. Sell, M.A. Gearba, B.D. DePaola, R.J. Knize, Opt. Lett. 39, 528 (2014)CrossRefADSGoogle Scholar
  10. 10.
    M.B. Kienlen, N.T. Holte, H.A. Dassonville, A.M.C. Dawes, K.D. Iversen, R.M. McLaughlin, S.K. Mayer, Am. J. Phys. 81, 442 (2013)CrossRefADSGoogle Scholar
  11. 11.
    A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, Nat. Phys. 6, 894 (2010)CrossRefGoogle Scholar
  12. 12.
    C.F. Ockeloen, A.F. Tauschinsky, R.J.C. Spreeuw, S. Whitlock, Phys. Rev. A 82, 061606(R) (2010)CrossRefADSGoogle Scholar
  13. 13.
    A.M. Akulshin, Ch. Perrella, G.-W. Truong, R.J. McLean, A. Luiten, J. Phys. B At. Mol. Opt. Phys. 45, 245503 (2012)CrossRefADSGoogle Scholar
  14. 14.
    A.M. Akulshin, A.A. Orel, R.J. McLean, J. Phys. B At. Mol. Opt. Phys. 45, 015401 (2012)CrossRefADSGoogle Scholar
  15. 15.
    A.M. Akulshin, N.G. Basov, V.L. Velichansky, A.S. Zibrov, M.V. Zverkov, V.V. Nikitin, O.G. Ochotnikov, N.V. Senkov, V.A. Sautenkov, D.A. Tyurikov, E.K. Yurkin, Sov. J. Quantum Electron. 13, 1003 (1983)CrossRefADSGoogle Scholar
  16. 16.
    D.Z. Anderson, J.C. Frisch, C.S. Masser, Appl. Opt. 23, 1238 (1984)CrossRefADSGoogle Scholar
  17. 17.
    R. Hui, A. Mecozzi, Appl. Phys. Lett. 60, 2454 (1992)CrossRefADSGoogle Scholar
  18. 18.
    A.P. Anthur, R.T. Watts, K. Shi, J. O’Carroll, D. Venkitesh, L.P. Barry, Opt. Express 21, 15568 (2013)CrossRefGoogle Scholar
  19. 19.
    A.S. Zibrov, M.D. Lukin, M. Scully, Phys. Rev. Lett. 83, 4049 (1999)CrossRefADSGoogle Scholar
  20. 20.
    A.M. Akulshin, R.J. McLean, A.I. Sidorov, P. Hannaford, J. Phys. B At. Mol. Opt. Phys. 44, 175502 (2011)CrossRefADSGoogle Scholar
  21. 21.
    A.M. Akulshin, R.J. McLean, Phys. Rev. A 85, 065802 (2012)CrossRefADSGoogle Scholar
  22. 22.
    A.S. Zibrov, I. Novikova, JETP Lett. 82, 110 (2005)CrossRefADSGoogle Scholar
  23. 23.
    A. Akulshin, D. Budker, R. McLean, Opt. Lett. 39, 845 (2014) Google Scholar
  24. 24.
    A. Akulshin, D. Budker, B. Patton, R. McLean,
  25. 25.
    W. Happer, G.J. MacDonald, C.E. Max, F.J.J. Dyson, Opt. Soc. Am. A11, 263 (1994)CrossRefADSGoogle Scholar
  26. 26.
    B. Zhdanov, R. Knize, Opt. Eng. 52, 021010 (2013)CrossRefADSGoogle Scholar
  27. 27.
    A. Schilke, C. Zimmermann, P.W. Courteille, W. Guerin, Nat. Photonics 6, 101 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexander Akulshin
    • 1
  • Christopher Perrella
    • 2
  • Gar-Wing Truong
    • 3
  • Andre Luiten
    • 2
    • 3
  • Dmitry Budker
    • 4
  • Russell McLean
    • 1
  1. 1.Centre for Quantum and Optical ScienceSwinburne University of TechnologyMelbourneAustralia
  2. 2.Institute of Photonics and Advanced Sensing, School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia
  3. 3.School of PhysicsUniversity of Western AustraliaNedlandsAustralia
  4. 4.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations