Advertisement

Applied Physics B

, Volume 117, Issue 3, pp 785–796 | Cite as

How bosonic is a pair of fermions?

  • Malte C. Tichy
  • P. Alexander Bouvrie
  • Klaus Mølmer
Article

Abstract

Composite particles made of two fermions can be treated as ideal elementary bosons as long as the constituent fermions are sufficiently entangled. In that case, the Pauli principle acting on the parts does not jeopardise the bosonic behaviour of the whole. An indicator for bosonic quality is the composite boson normalisation ratio \(\chi _{N+1}/\chi _{N}\) of a state of \(N\) composites. This quantity is prohibitively complicated to compute exactly for realistic two-fermion wavefunctions and large composite numbers \(N\). Here, we provide an efficient characterisation in terms of the purity \(P\) and the largest eigenvalue \(\lambda _1\) of the reduced single-fermion state. We find the states that extremise \(\chi _N\) for given \(P\) and \(\lambda _1\), and we provide easily evaluable, saturable upper and lower bounds for the normalisation ratio. Our results strengthen the relationship between the bosonic quality of a composite particle and the entanglement of its constituents.

Keywords

Normalisation Factor Pauli Principle Schmidt Decomposition Composite Boson Saturable Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Florian Mintert, Łukasz Rudnicki, Alagu Thilagam and Nikolaj Th. Zinner for stimulating discussions, and Christian K. Andersen, Durga Dasari, Jake Gulliksen, Pinja Haikka, David Petrosyan and Andrew C. J. Wade for valuable feedback on the manuscript. M.C.T. gratefully acknowledges support by the Alexander von Humboldt-Foundation through a Feodor Lynen Fellowship. K.M. gratefully acknowledges support by the Villum Foundation. P.A.B. gratefully acknowledges support by the Progama de Movilidad Internacional CEI BioTic en el marco PAP-Erasmus.

References

  1. 1.
    ALICE Collaboration. Two-pion Bose-Einstein correlations in pp collisions at sqrt\([{\rm s}]\)=900 GeV. Phys. Rev. D 82, 052001 (2010)Google Scholar
  2. 2.
    M. Zwierlein, C. Stan, C. Schunck, S. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Observation of Bose-Einstein condensation of molecules. Phys. Rev. Lett. 91, 250401 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    C.K. Law, Quantum entanglement as an interpretation of bosonic character in composite two-particle systems. Phys. Rev. A 71, 034306 (2005)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys 81, 865 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M.C. Tichy, F. Mintert, A. Buchleitner, Essential entanglement for atomic and molecular physics. J. Phys. B At. Mol. Opt. Phys 44, 192001 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S. Rombouts, D.V. Neck, K. Peirs, L. Pollet, Maximum occupation number for composite boson states. Mod. Phys. Lett. A17, 1899 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    P. Sancho, Compositeness effects, Pauli’s principle and entanglement. J. Phys. A Math. Theor. 39, 12525 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Gavrilik, Y.A. Mishchenko, Entanglement in composite bosons realized by deformed oscillators. Phys. Lett. A 376, 1596 (2012)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    A.M. Gavrilik, Y.A. Mishchenko, Energy dependence of the entanglement entropy of composite boson (quasiboson) systems. J. and. Phys. A Math. Theor. 46, 145301 (2013)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Combescot, Commutator formalism for pairs correlated through Schmidt decomposition as used in quantum information. Europhys. Lett. 96, 60002 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Combescot, X. Leyronas, C. Tanguy, On the N-exciton normalization factor. Europ. Phys. J. B 31, 17 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    C. Chudzicki, O. Oke, W.K. Wootters, Entanglement and composite bosons. Phys. Rev. Lett. 104, 070402 (2010)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Ramanathan, P. Kurzynski, T. Chuan, M. Santos, D. Kaszlikowski, Criteria for two distinguishable fermions to form a boson. Phys. Rev. A 84, 034304 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S.S. Avancini, J.R. Marinelli, G. Krein, Compositeness effects in the Bose-Einstein condensation. J. Phys. A: Math. Theor. 36, 9045 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M.C. Tichy, P.A. Bouvrie, K. Mølmer, Collective interference of composite Two-Fermion bosons. Phys. Rev. Lett. 109, 260403 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    P. Kurzyński, R. Ramanathan, A. Soeda, T.K. Chuan, D. Kaszlikowski, Particle addition and subtraction channels and the behavior of composite particles. New J. Phys. 14, 093047 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S.-Y. Lee, J. Thompson, P. Kurzynski, A. Soeda, D. Kaszlikowski, Coherent states of composite bosons. Phys. Rev. A 88, 063602 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    T.K. Chuan, D. Kaszlikowski, Composite particles and the Szilard engine. arxiv 1308. 1525 (2013)ADSGoogle Scholar
  19. 19.
    T. Brougham, S.M. Barnett, I. Jex, Interference of composite bosons. J. Mod. Opt. 57, 587 (2010)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Combescot, F. Dubin, M. Dupertuis, Role of Fermion exchanges in statistical signatures of composite bosons. Phys. Rev. A 80, 013612 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Thilagam, Binding energies of composite boson clusters using the Szilard engine. arXiv prepr. arXiv 1309. 6493 (2013)ADSGoogle Scholar
  22. 22.
    Y. Pong, C. Law, Bosonic characters of atomic Cooper pairs across resonance. Phys. Rev. A 75, 043613 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    M.C. Tichy, P.A. Bouvrie, K. Mølmer, Two-boson composites. Phys. Rev. A 88, 061602(R) (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M.C. Tichy, P.A. Bouvrie, K. Mølmer, Bosonic behavior of entangled fermions. Phys. Rev. A 86, 042317 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    D. Bernstein, Matrix mathematics: theory, facts, and formulas (Princeton University Press, Princeton, 2009)Google Scholar
  26. 26.
    M. Combescot, O. Betbeder-Matibet, F. Dubin, The many-body physics of composite bosons. Phys. Rep. 463, 215 (2008)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    I.G. Macdonald, Symmetric functions and hall polynomials (Clarendon Press, Oxford, 1995)zbMATHGoogle Scholar
  28. 28.
    A. Thilagam, Crossover from bosonic to fermionic features in composite boson systems. J. Math. Chem. 51, 1897 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    R. Grobe, K. Rzazewski, J.H. Eberly, Measure of electron-electron correlation in atomic physics. J. Phys. B At. Mol. Opt. Phys 27, L503 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    T.-C. Wei, P.M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST handbook of mathematical functions (Cambridge University Press, New York, NY, 2010)zbMATHGoogle Scholar
  32. 32.
    A.G. Munford, A note on the uniformity assumption in the birthday problem. Am. Stat. 31, 119 (1977)MathSciNetGoogle Scholar
  33. 33.
    M. Combescot, D. Snoke, Stability of a Bose-Einstein condensate revisited for composite bosons. Phys. Rev. B 78, 144303 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    N. Zinner, A. Jensen, Nuclear \(\alpha \)-particle condensates: definitions, occurrence conditions, and consequences. Phys. Rev. C 78, 041306 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, Concepts of nuclear \(\alpha \)-particle condensation. Phys. Rev. C 80, 064326 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Malte C. Tichy
    • 1
  • P. Alexander Bouvrie
    • 2
  • Klaus Mølmer
    • 1
  1. 1.Department of Physics and AstronomyUniversity of AarhusAarhus CDenmark
  2. 2.Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain

Personalised recommendations