Advertisement

Applied Physics B

, Volume 117, Issue 1, pp 183–194 | Cite as

A comparison of selected organic tracers for quantitative scalar imaging in the gas phase via laser-induced fluorescence

  • Stephan Faust
  • Martin Goschütz
  • Sebastian A. Kaiser
  • Thomas Dreier
  • Christof Schulz
Article

Abstract

This paper compares three of the tracers most commonly used for laser-induced fluorescence in gaseous flows, toluene, naphthalene, and acetone. Additionally, anisole (methoxybenzene, CH3OC6H5) is included in the comparison. Each tracer is employed to image the scalar field in the same nonreacting transient impinging turbulent jet. The jet fluid is seeded with tracer vapor in a bubbler, excitation is at 266 nm, and both air and nitrogen are used as bath gases. Measured signals are compared to theoretical predictions based on fluorescence quantum yield, absorption cross-section, and vapor pressure. We find that anisole shows the highest total signal intensity of all investigated species, while naphthalene features the highest signal per molecule. Acetone has the advantage of being insensitive to quenching by oxygen and that its fluorescence is partly at visible wavelengths. In addition to this volatility-limited scenario at room temperature, we also compare the expected relative signals for elevated temperatures and for a hypothetical case in which the amount of admissible tracer seeding is limited.

Keywords

Fluorescence Quantum Yield Mixture Fraction Tracer Concentration Anisole Internal Combustion Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by the Rückkehrerprogramm of the NRW Ministry for Innovation, Science, and Research and by the Deutsche Forschungsgemeinschaft (DFG). Additionally, the authors would like to thank IFPEN (France) for lending the hardware for the jet experiment.

References

  1. 1.
    B.H. Cheung, R.K. Hanson, Appl. Phys. B 98, 581 (2010)CrossRefADSGoogle Scholar
  2. 2.
    S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 30, 1555 (2005)CrossRefGoogle Scholar
  3. 3.
    W. Koban, J. Schorr, C. Schulz, Appl. Phys. B 74, 111 (2002)CrossRefADSGoogle Scholar
  4. 4.
    M. Orain, F. Grisch, E. Joudanneau, B. Rossow, C. Guin, B. Trétout, C. R. Mecanique 337, 373 (2009)CrossRefADSGoogle Scholar
  5. 5.
    T. Hagemeyer, M. Hartmann, M. Kühle, D. Thévenin, K. Zähringer, Exp. Fluids 52, 361 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Cundy, P. Trunk, A. Dreizler, V. Sick, Exp. Fluids 51, 1169 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 100, 945 (2010)CrossRefADSGoogle Scholar
  8. 8.
    J. Yoo, D. Mitchell, D.F. Davidson, R.K. Hanson, Exp. Fluids 49, 751 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Luong, W. Koban, C. Schulz, J. Phys. Conf. Series 45, 155 (2006)CrossRefGoogle Scholar
  10. 10.
    J.E. Dec, W. Hwang, SAE Int. J. Engines 2, 421 (2009)Google Scholar
  11. 11.
    M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B 91, 669 (2008)CrossRefADSGoogle Scholar
  12. 12.
    W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Proc. Combust. Inst. 30, 1545 (2005)CrossRefGoogle Scholar
  13. 13.
    V.M. Salazar, S.A. Kaiser: SAE Technical Paper 2009-01-2682 (2009)Google Scholar
  14. 14.
    C. Schulz, V. Sick, Progr. Energy. Combust. Sci. 31, 75 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 112, 203 (2013)CrossRefADSGoogle Scholar
  16. 16.
    K.H. Tran, C. Morin, M. Kühni, P. Guibert, Appl. Phys. B. doi: 10.1007/s00340-013-5626-8 (2013)
  17. 17.
    R. Devillers, G. Bruneaux, C. Schulz, Appl. Phys. B 96, 735 (2009)CrossRefADSGoogle Scholar
  18. 18.
    W. Koban, C. Schulz: SAE Technical paper 2005-01-2091 (2005)Google Scholar
  19. 19.
    K. Mohri, M. Luong, G. Vanhove, T. Dreier, C. Schulz, Appl. Phys. B 103, 707 (2011)CrossRefADSGoogle Scholar
  20. 20.
    M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 102, 163 (2011)CrossRefADSGoogle Scholar
  21. 21.
    C. Strozzi, J. Sotton, A. Mura, M. Bellenue, Meas. Sci. Technol. 20, 125403 (2009)CrossRefADSGoogle Scholar
  22. 22.
    T. Hirasawa, T. Kaneba, Y. Kamata, K. Muraoka, Y. Nakamura, J. Vis. 10, 197 (2007)CrossRefGoogle Scholar
  23. 23.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)CrossRefGoogle Scholar
  24. 24.
    T. Etzkorn, B. Klotz, S. Sörensen, I.V. Patroescu, I. Barnes, K.H. Becker, U. Platt, Atmos. Environ. 33, 525 (1999)CrossRefADSGoogle Scholar
  25. 25.
    M. Suto, X. Wang, J. Shan, L.C. Lee, J. Quant. Spectrosc. Radiat. Transfer 48, 79 (1992)CrossRefADSGoogle Scholar
  26. 26.
    J.D. Koch, J. Gronki, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 109, 2037 (2008)CrossRefADSGoogle Scholar
  27. 27.
    N. Nijegorodov, R. Mabbs, D.P. Winkoun, Spectrochim. Acta A 59, 595 (2003)CrossRefADSGoogle Scholar
  28. 28.
    S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383, 6 (2011)CrossRefADSGoogle Scholar
  29. 29.
    S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81 (2013)Google Scholar
  30. 30.
    M.C. Thurber, R.K. Hanson, Appl. Phys. B 69, 229 (1999)CrossRefADSGoogle Scholar
  31. 31.
    A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, J. Bood, Opt. Exp. 20, 3043 (2012)CrossRefADSGoogle Scholar
  32. 32.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)CrossRefADSGoogle Scholar
  33. 33.
    B. Rossow: Photophysical processes of organic fluorescent molecules and kerosene - application to combustion engines, Institut des Sciences Moléculaires d’Orsay, Université Paris-Sud 11, Paris (2011)Google Scholar
  34. 34.
    J. Savard, Ann. Chim. 10, 287 (1929)Google Scholar
  35. 35.
    F.P. Zimmermann, W. Koban, C.M. Roth, D.-P. Herten, C. Schulz, Chem. Phys. Lett. 426, 248 (2006)CrossRefADSGoogle Scholar
  36. 36.
    J.K. Marsh, J. Chem. Soc. Trans. 125, 418 (1924)CrossRefGoogle Scholar
  37. 37.
    F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)CrossRefADSGoogle Scholar
  38. 38.
    E. Wiedemann, G.C. Schmidt, Ann. Phys. 56, 18 (1895)CrossRefGoogle Scholar
  39. 39.
    A. Braeuer, F. Beyrau, A. Leipertz, Appl. Opt. 45, 4982 (2006)CrossRefADSGoogle Scholar
  40. 40.
    G.H. Damon, F. Daniels, J. Am. Chem. Soc. 55, 2363 (1933)CrossRefGoogle Scholar
  41. 41.
    M. Loeffler, F. Beyrau, A. Leipertz, Appl. Opt. 49, 37 (2010)CrossRefADSGoogle Scholar
  42. 42.
    A. Lozano, B. Yip, R.K. Hanson, Exp. Fluids 13, 369 (1992)CrossRefGoogle Scholar
  43. 43.
    F. Ossler, M. Aldén, Appl. Phys. B 64, 493 (1997)CrossRefADSGoogle Scholar
  44. 44.
    M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963 (1998)CrossRefADSGoogle Scholar
  45. 45.
    V.M. Salazar, S.A. Kaiser, F. Halter, SAE Int. J. Fuels Lubr. 2, 737 (2009)Google Scholar
  46. 46.
    J.D. Koch, Fuel Tracer Photophysics for Quantitative Planar Laser-Induced Fluorescence (Stanford University, California, USA, 2005)Google Scholar
  47. 47.
    M.C. Thurber, Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows (Stanford University, California, USA, 1999)Google Scholar
  48. 48.
    D.A. Rothamer, J.A. Snyder, R.K. Hanson, R.R. Steeper, Appl. Phys. B 99, 371 (2010)CrossRefADSGoogle Scholar
  49. 49.
    S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000)CrossRefADSGoogle Scholar
  50. 50.
    M. Fikri, L.R. Cancino, M. Hartmann, C. Schulz, Proc. Combust. Inst. 34, 393 (2013)CrossRefGoogle Scholar
  51. 51.
    M. Hartmann, I. Gushterova, M. Fikri, C. Schulz, R. Schießl, U. Maas, Combust. Flame 158, 172 (2011)CrossRefGoogle Scholar
  52. 52.
    C. Schulz, J. Gronki, S. Andersson: SAE Technical paper 2004-01-1917 (2004)Google Scholar
  53. 53.
    S.A. Kaiser, M. Schild, C. Schulz, Proc. Combust. Inst. 34, 2911 (2013)CrossRefGoogle Scholar
  54. 54.
    J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)CrossRefADSGoogle Scholar
  55. 55.
    S.M. Faust, Characterisation of Organic Fuel Tracers for Laser-Based Quantitative Diagnostics of Fuel Concentration, Temperature, and Equivalence Ratio in Practical Combustion Processes (University of Duisburg-Essen, Duisburg, 2013)Google Scholar
  56. 56.
    S.E. Moran, B.L. Ulich, W.P. Elkins, R.L. Stritttmatter, M.J. DeWeert, Proc. SPIE 3173, 430 (1997)CrossRefADSGoogle Scholar
  57. 57.
    F. Grossmann, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, Appl. Phys. B 62, 249 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephan Faust
    • 1
  • Martin Goschütz
    • 1
  • Sebastian A. Kaiser
    • 1
  • Thomas Dreier
    • 1
  • Christof Schulz
    • 1
  1. 1.Institute for Combustion and Gas Dynamics – Reactive FluidsUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations