Advertisement

Applied Physics B

, Volume 117, Issue 1, pp 113–120 | Cite as

Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL

  • J. P. Waclawek
  • R. Lewicki
  • H. Moser
  • M. Brandstetter
  • F. K. Tittel
  • B. Lendl
Article

Abstract

Sulfur dioxide (SO2) trace gas detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using a continuous wave, distributed feedback quantum cascade laser operating at 7.24 μm was performed. Influence of water vapor addition on monitored QEPAS SO2 signal was also investigated. A normalized noise equivalent absorption coefficient of NNEA (1σ) = 1.21 × 10−8 cm−1 W Hz−1/2 was obtained for the ν 3 SO2 line centered at 1,380.93 cm−1 when the gas sample was moisturized with 2.3 % H2O. This corresponds to a minimum detection limit (1σ) of 63 parts per billion by volume for a 1 s lock-in time constant.

Keywords

Minimum Detection Limit Quartz Tuning Fork Wavelength Modulation Spectroscopy QEPAS Signal QEPAS Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

JPW, HM and MB acknowledge financial support provided by the Austrian research funding association under the scope of the COMET program within the research network “Process Analytical Chemistry” (contract # 825340) and the Carinthian Tech Research RL, FKT acknowledge financial support provided by NSF ERC MIRTHE and NSF-ANR NexCILAS.

References

  1. 1.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1–18 (2010)CrossRefADSGoogle Scholar
  2. 2.
    R. Lewicki, M. Jahjah, Y. Ma, P. Stefinski, J. Tarka, M. Razeghi, F. K. Tittel, Chap. 23 in The Wonder of Nanotechnology: Quantum Optoelectronic devices and applications. SPIE Press, pp. 597–632 (2013)Google Scholar
  3. 3.
    L. Gong, R. Lewicki, R. Griffin, F.K. Tittel, C.R. Lonsdale, R.G. Stevens, J.R. Pierce, Q.G.J. Malloy, S.A. Travis, L.M. Bobmanuel, B.L. Lefer, J.H. Flynn, Atmos. Environ. 77, 893–900 (2013)CrossRefADSGoogle Scholar
  4. 4.
    A. Varga, Z. Bozóki, M. Szakáll, G. Szabó, Appl. Phys. B 85, 315–321 (2006)CrossRefADSGoogle Scholar
  5. 5.
    S. Solga, T. Schwartz, M. Mudalel, L. Spacek, R. Lewicki, F. K. Tittel, C. Loccioni, T. Risby, J. Breath Res. 7(3), 037101 (2013)Google Scholar
  6. 6.
    A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001)CrossRefADSGoogle Scholar
  7. 7.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902–1904 (2002)CrossRefADSGoogle Scholar
  8. 8.
    F. K. Tittel, R. Lewicki, Ch. 15, (Woodhead Publishing Ltd., 2013), pp. 579–629Google Scholar
  9. 9.
    V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B.E. Bernacki, J. Kriesel, Appl. Phys. B 112, 25–33 (2013)CrossRefADSGoogle Scholar
  10. 10.
    C. Bauer, U. Willer, R. Lewicki, A. Pohlkötter, A. Kosterev, D. Kosynkin, F.K. Tittel, W. Schade, J. Phys: Conf. Ser. 157(1), 012002 (2009)ADSGoogle Scholar
  11. 11.
    A.A. Kosterev, F.K. Tittel, D. Serebryakov, A.L. Malinovsky, I. Morozov, Rev. Sci. Instrum. 76, 1–9 (2005)CrossRefGoogle Scholar
  12. 12.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133–138 (2005)CrossRefADSGoogle Scholar
  13. 13.
    T.L. Cottrell, J.C. McCoubrey, Molecular Energy Transfer in Gases (Butterworths, London, 1961)Google Scholar
  14. 14.
    Pollution Prevention and Abatement Handbook (The World Bank Group, Washington DC, 1998)Google Scholar
  15. 15.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)CrossRefADSGoogle Scholar
  16. 16.
    L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Appl. Phys. B 100, 627–635 (2010)CrossRefADSGoogle Scholar
  17. 17.
    S. Schilt, L. Thevenaz, Infrared Phys. 48, 154–162 (2006)CrossRefGoogle Scholar
  18. 18.
    R.D. Grober, J. Acimovic, J. Schuck, D. Hessman, P.J. Kindlemann, J. Hespanha, A.S. Morse, K. Karrai, I. Tiemann, S. Manus, Rev. Sci. Instrum. 71, 2776–2780 (2000)CrossRefADSGoogle Scholar
  19. 19.
    G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 85, 301–306 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. P. Waclawek
    • 1
  • R. Lewicki
    • 2
  • H. Moser
    • 1
  • M. Brandstetter
    • 1
  • F. K. Tittel
    • 2
  • B. Lendl
    • 1
  1. 1.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  2. 2.Electrical and Computer Engineering DepartmentRice UniversityHoustonUSA

Personalised recommendations