Advertisement

Applied Physics B

, Volume 117, Issue 1, pp 85–93 | Cite as

Surface thermometry in combustion diagnostics by sputtered thin films of thermographic phosphors

  • Jhon ParejaEmail author
  • Christian Litterscheid
  • Bernhard Kaiser
  • Matthias Euler
  • Norman Fuhrmann
  • Barbara Albert
  • Alejandro Molina
  • Jürgen Ziegler
  • Andreas Dreizler
Article

Abstract

The accuracy and robustness of the thermographic phosphors (TP) technique relies in the use of coatings with low thickness, high-intensity luminescent emission and high adhesion to the surfaces. Sputter deposition has been evaluated as an alternative for coating preparation of TPs for surface thermometry in combustion diagnostics. Thin films of \(\hbox {Gd}_{3}\hbox {Ga}_{5}\hbox {O}_{12}{:}\hbox {Cr}^{3+}\) have been deposited on fused silica and stainless steel substrates by radio frequency magnetron sputtering. Physical, chemical, and temperature-dependent luminescence properties of the phosphor films have been evaluated using X-ray diffraction, X-ray photoelectron spectroscopy and laser-induced luminescence, respectively. The results showed that the luminescence features of the thin films must be activated by heat treatment after sputter deposition. The \(\hbox {Gd}_{3}\hbox {Ga}_{5}\hbox {O}_{12}{:}\hbox {Cr}^{3+}\) films exhibited appropriate temperature sensitivity with adequate precision of the temperature determination, proving to be suitable for pointwise (0D) surface thermometry. An evaluation of the spatial homogeneity of the luminescence properties, which has not been yet addressed in the literature for thin films of TPs, revealed that thin \(\hbox {Gd}_3\hbox {Ga}_5\hbox {O}_{12}{:}\hbox {Cr}^{3+}\) films deposited on fused silica can be used for spatially resolved surface thermometry while those deposited on stainless steel require improvements to overcome spatial inhomogeneities of the luminescence lifetimes.

Keywords

Fuse Silica Stainless Steel Substrate Luminescence Lifetime Gallium Oxide Thermographic Phosphor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors kindly acknowledge financial support by the Deutsche Forschungsgemeinschaft DFG (DR 374/9-1 and AL 536/10-1), the Cluster of Excellence EXC 259 Center of Smart Interfaces and the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070). Mr. Pareja gratefully acknowledges Universidad Nacional de Colombia-Sede Medellín (Programa Beca Estudiante Sobresaliente de Posgrado 2011–2012), Alcaldía de Medellín (Programa Enlaza Mundos 2012), and the Institute Reaktive Strömungen und Messtechnik for their financial support of his research stay at TU Darmstadt.

References

  1. 1.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Prog. Mater. Sci. 46(5), 505 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Khalid, K. Kontis, Sensors 8(9), 5673 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Jaber, L. Zigan, A. Sakhrieh, A. Leipertz, in 11th International Conference on Combustion and Energy Utilization (ICCEU) (2012)Google Scholar
  4. 4.
    J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, Prog. Energy Combust. Sci. 39, 37 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Brübach, E. Van Veen, A. Dreizler, Exp. Fluids 44(6), 897 (2008)CrossRefGoogle Scholar
  6. 6.
    J.P. Feist, A.L. Heyes, S. Seefelt, J. Power Energy 217(2), 193 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Omrane, F. Ossler, M. Aldén, J. Svenson, J.B.C. Pettersson, Fire Mater. 29(1), 39 (2005)CrossRefGoogle Scholar
  8. 8.
    S.W. Allison, M.R. Gates, D.L. Beshears, G.T. Gillies, AIP Conf. Proc. 684(1), 1033 (2003)CrossRefADSGoogle Scholar
  9. 9.
    N. Fuhrmann, M. Schild, D. Bensing, S. Kaiser, C. Schulz, J. Brübach, A. Dreizler, Appl. Phys. B 106(4), 945 (2012)CrossRefADSGoogle Scholar
  10. 10.
    A.M. Murray, L.A. Melton, Appl. Opt. 24(17), 2783 (1985)CrossRefADSGoogle Scholar
  11. 11.
    J. Brübach, A. Patt, A. Dreizler, Appl. Phys. B 83(4), 499 (2006)CrossRefADSGoogle Scholar
  12. 12.
    B. Atakan, D. Roskosch, Proc. Combust. Inst. 34(2), 3603 (2013)CrossRefGoogle Scholar
  13. 13.
    R.M. Ranson, C.B. Thomas, M.R. Craven, Meas. Sci. Technol. 9(12), 1947 (1998)CrossRefADSGoogle Scholar
  14. 14.
    S. Alaruri, D. McFarland, A. Brewington, M. Thomas, N. Sallee, Opt. Lasers Eng. 22(1), 17 (1995)CrossRefGoogle Scholar
  15. 15.
    I.P. McClean, A.J. Simons, C.B. Thomas, J.E. Mutton, IEEE Trans. Instrum. Meas. 49(1), 129 (2000)CrossRefGoogle Scholar
  16. 16.
    J. Brübach, M. Hage, J. Janicka, A. Dreizler, Proc. Combust. Inst. 32(1), 855 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Seyfried, G. Sarner, A. Omrane, M. Richter, H. Schmidt, M. Alden, ASME Conf. Proc. 2005(46997), 813 (2005)Google Scholar
  18. 18.
    H. Seyfried, M. Richter, M. Aldén, H. Schmidt, AIAA J. 45(12), 2966 (2007)CrossRefADSGoogle Scholar
  19. 19.
    J. Armfield, R. Graves, D. Beshears, M. Cates, T.V. Smith, S.W. Allison, SAE Technical Paper No. 971642 (1997)Google Scholar
  20. 20.
    W. Kern, K.K. Schuegraf, 1 - Deposition Technologies and Applications: Introduction and Overview (William Andrew Publishing, Norwich, 2001)Google Scholar
  21. 21.
    A. Nebatti, C. Pflitsch, C. Eckert, B. Atakan, Prog. Org. Coat. 67, 356 (2010)CrossRefGoogle Scholar
  22. 22.
    C. Pflitsch, D. Viefhaus, B. Atakan, Chem. Vap. Depos. 13(8), 420 (2007)CrossRefGoogle Scholar
  23. 23.
    R.J.L. Steenbakker, J.P. Feist, R.G. Wellman, J.R. Nicholls, J. Eng. Gas Turbines Power Trans. ASME 131, 041301 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Rossnagel, K. Seshan, 8 - Sputtering and Sputter Deposition (William Andrew Publishing, Norwich, 2001)Google Scholar
  25. 25.
    T. Minami, T. Nakatani, T. Miyata, T. Shirai, Surf. Coat. Technol. 146–147, 508 (2001)CrossRefGoogle Scholar
  26. 26.
    S.M. Chung, S.H. Han, Y.J. Kim, Mater. Lett. 59(7), 786 (2005)CrossRefGoogle Scholar
  27. 27.
    T.K. Tran, W. Park, J.W. Tomm, B.K. Wagner, S.M. Jacobsen, C.J. Summers, P.N. Yocom, S.K. McClelland, J. Appl. Phys. 78(9), 5691 (1995)CrossRefADSGoogle Scholar
  28. 28.
    H. Song, Y.J. Kim, J. Eur. Ceram. Soc. 27(13–15), 3745 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Miyata, J. Ishino, K. Sahara, T. Minami, Thin Solid Films 519(22), 8095 (2011)CrossRefADSGoogle Scholar
  30. 30.
    J.P. Chu, I.J. Hsieh, J.T. Chen, M.S. Feng, Mater. Chem. Phys. 53(2), 172 (1998)CrossRefGoogle Scholar
  31. 31.
    J. Kim, K. Yoon, J. Mater. Sci. Mater. Electron. 20(9), 879 (2009)CrossRefGoogle Scholar
  32. 32.
    D. Kim, S. Choi, C. Park, B. O., J. Mater. Sci. Mater. Electronics 9(1), 31 (1998)Google Scholar
  33. 33.
    C. Chartier, C. Barthou, P. Benalloul, S. Chenot, J.M. Frigerio, J. Cryst. Growth 256(3–4), 305 (2003)CrossRefADSGoogle Scholar
  34. 34.
    E.J. Bosze, G.A. Hirata, J. McKittrick, J. Lumin. 131(1), 41 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Fuhrmann, T. Kissel, A. Dreizler, J. Brübach, Meas. Sci. Technol. 22, 4501 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Fukaya, K. Adachi, M. Obara, H. Kumagai, Opt. Commun. 187(4–6), 373 (2001)CrossRefADSGoogle Scholar
  37. 37.
    M.S.B. Darby, T.C. May-Smith, R.W. Eason, T. Donnelly, J.G. Lunney, K.D. Rogers, Appl. Surf. Sci. 254(11), 3364 (2008)CrossRefADSGoogle Scholar
  38. 38.
    X. Xu, Z. Xu, Y. Hou, X. Wang, X. Chen, X. Xu, Chin. Phys. Lett. 16(5), 387 (1999)CrossRefADSGoogle Scholar
  39. 39.
    X. Xu, Z. Xu, Y. Hou, Y. Wang, X. Xu, Displays 22(3), 97 (2001)CrossRefGoogle Scholar
  40. 40.
    B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York, 1980)Google Scholar
  41. 41.
    J. Brübach, J. Janicka, A. Dreizler, Opt. Lasers Eng. 47(1), 75 (2009)CrossRefGoogle Scholar
  42. 42.
    M.A. Everest, D.B. Atkinson, Rev. Sci. Instrum. 79(2), 23108 (2008)CrossRefGoogle Scholar
  43. 43.
    N. Fuhrmann, J. Brübach, A. Dreizler, Appl. Phys. B (2013). doi: 10.1007/s00340-013-5700-2
  44. 44.
    V. Weber, J. Brübach, R. Gordon, A. Dreizler, Appl. Phys. B 103(2), 421 (2011)CrossRefADSGoogle Scholar
  45. 45.
    E.L. Dukhovskaya, Y.G. Saksonov, A.G. Titova, Neorg. Mater. 9, 809 (1973)Google Scholar
  46. 46.
    R. Martín-Rodríguez, R. Valiente, F. Rodríguez, M. Bettinelli, Nanotechnology 22(26), 265707 (2011)CrossRefADSGoogle Scholar
  47. 47.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Inc, Minnesota, 1995)Google Scholar
  48. 48.
    W.H. Chao, R.J. Wu, T.B. Wu, J. Alloys, J. Alloys Compd. 506(1), 98 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jhon Pareja
    • 1
    • 2
    • 5
    Email author
  • Christian Litterscheid
    • 3
  • Bernhard Kaiser
    • 4
  • Matthias Euler
    • 1
  • Norman Fuhrmann
    • 1
  • Barbara Albert
    • 3
    • 5
  • Alejandro Molina
    • 2
  • Jürgen Ziegler
    • 4
  • Andreas Dreizler
    • 1
    • 5
  1. 1.Reaktive Strömungen und Messtechnik, Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Bioprocesos y Flujos Reactivos, Facultad de MinasUniversidad Nacional de Colombia - Sede MedellínMedellínColombia
  3. 3.Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Institut für MaterialwissenschaftTechnische Universität DarmstadtDarmstadtGermany
  5. 5.Graduate School of Excellence Energy Science and EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations