Applied Physics B

, Volume 116, Issue 4, pp 997–1004 | Cite as

A laser setup for rubidium cooling dedicated to space applications

  • T. Lévèque
  • L. Antoni-Micollier
  • B. Faure
  • J. Berthon


We present the complete characterization of a laser setup for rubidium cooling dedicated to space applications. The experimental setup is realized with commercial off-the-shelf fiber components suitable for space applications. By frequency doubling two fiber laser diodes at 1560 nm, we produce the two optical frequencies at 780 nm required for atomic cooling of 87Rb. The first laser is locked on saturated absorption signal and long-term frequency drift has been canceled using a digital integrator. The optical frequency of the second laser is controlled relatively to the first one by a frequency comparison method. A full characterization of the setup, including frequency stability evaluation and frequency noise measurement, has been performed. The optical frequency doubling module has been submitted to environmental tests to verify its compatibility with space applications.



We would like to thank AdvEOTec company for environmental characterization of the frequency doubling module. We also thank F.X. Esnault and A. Gauguet for fruitful discussions and careful readings. We thank M. Lours from SYRTE laboratory for providing electronic locking modules.


  1. 1.
    Y. Sortais, S. Bize, M. Abgrall, S. Zhang, C. Nicolas, C. Mandache, P. Lemonde, P. Laurent, G. Santarelli, N. Dimarcq, P. Petit, A. Clairon, A. Mann, A. Luiten, S. Chang, C. Salomon, Phys. Scripta T95, 50–57 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25–61 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, A. Landragin, Phys. Rev. A 80, 063604 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Hogan, D.M.S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. Chiow, P.W. Graham, M.A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B.D. Seery, L. Feinberg, R. Keski-Kuha, Gen. Relativ. Gravit. 43, 1953–2009 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    P. Cladé, E. De Mirandes, M. Cadoret, S. Guellati-Khelifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. Lett. 96, 033001 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    P. Wolf, F. Chapelet, S. Bize, A. Clairon, Phys. Rev. Lett. 96, 060801 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Nat. Commun. 2, 474 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Bodart, S. Merlet, N. Malossi, F. Pereira dos Santos, P. Bouyer, A. Landragin, Appl. Phys. Lett. 96, 134101 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, A. Bresson, Appl. Phys. Lett. 102, 144107 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    L. Cacciapuoti, N. Dimarcq, G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, P. Berthoud, A. Jornod, F. Reina, S. Feltham, C. Salomon, Nucl. Phys. B 166, 303 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Cacciapuoti et al., STE-QUEST Science Requirements Document, FPM-SA-DC-00001, issue 2, revision 3 (2012) .
  12. 12.
    H. Müntinga et al., Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, Opt. Commun. 266, 609 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Schmidt, M. Prevedelli, A. Giorgini, G.M. Tino, A. Peters, Appl. Phys. B 102, 11 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    G. Stern, B. Allard, M. Robert-de-Saint-Vincent, J.P. Brantut, B. Battelier, T. Bourdel, P. Bouyer, Appl. Opt. 49, 3092 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, P. Bouyer, Opt. Lett. 36, 4128 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S.S. Sané, S. Bennetts, J.E. Debs, C.C.N. Kuhn, G.D. McDonald, P.A. Altin, J.D. Close, N.P. Robins, Opt. Express 20, 8915 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    D.A. Steck, Rubidium 87 D Line Data,, revision 2.1.4 (2010)
  19. 19.
    Keopsys, 2W, Ref. CEFA-C-PB-HP-PM-33-NL1-OM1-B202-FA-FA and Alphanov, 1W, Ref. EDFA-1560-30-PGoogle Scholar
  20. 20.
    K. Numata, J. Camp, M.A. Krainak, L. Stolpner, Opt. Express 18, 22781 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Generic Reliability Assurance Requirements for Optoelectronic Devices Used in Telecommunications Equipment, Telcordia, GR-468-CORE no. 2 (2004)Google Scholar
  22. 22.
    K. Numata, J. Camp, in Proceedings of 9th LISA Symposium, APS Conference Series, vol. 47, ed. by G. Auger, P. Binétruy, E. Plagnol (Astronomical Society of the Pacific, 2012)Google Scholar
  23. 23.
    S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, Y. Ouerdane, Opt. Express 20, 8457 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Thomas, M. Myara, L. Troussellier, E. Burov, A. Pastouret, D. Boivin, G. Mélin, O. Gilard, M. Sotom, P. Signoret, Opt. Express 20, 2435 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    This test is described in MIL-STD883, Method 2026, test condition 1FGoogle Scholar
  26. 26.
    J.L. Hall, L. Hollberg, T. Bear, H.G. Robinson, Appl. Phys. Lett. 39, 680 (1981)ADSCrossRefGoogle Scholar
  27. 27.
    T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    O. Pajot, F. Vernotte, C. Plantard, P.M. Mbaye, Electron. Lett. 48, 329 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Lévèque
    • 1
  • L. Antoni-Micollier
    • 1
    • 2
  • B. Faure
    • 1
  • J. Berthon
    • 1
  1. 1.Centre National d’Études SpatialesToulouseFrance
  2. 2.LP2N - Institut d’Optique d’AquitaineTalenceFrance

Personalised recommendations