Applied Physics B

, Volume 116, Issue 4, pp 855–865 | Cite as

Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases

  • R. M. Spearrin
  • W. Ren
  • J. B. Jeffries
  • R. K. Hanson


A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm−1) and combination υ 1 + υ 3 band (~3,610 cm−1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm−1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm−1, paired with the R(28) line near 3,633.08 cm−1. This combination yields high temperature sensitivity (ΔE” = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600–1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.


Shock Tube Temperature Sensitivity Fundamental Band Shock Tube Experiment Chemical Kinetic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



All experiments discussed herein were performed at the High Temperature Gasdynamics Laboratory at Stanford University. Support for these experiments was provided by the Air Force Office of Scientific Research (AFOSR) with Chiping Li as contract monitor. We would also like to acknowledge Andy Tulgestke and Luke Zaczek for their support in operating the shock tube for sensor demonstration.


  1. 1.
    H. Teichert, T. Fernholz, V. Ebert, Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl. Opt. 42, 2043 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)CrossRefGoogle Scholar
  4. 4.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, A diode-laser absorption sensor system for combustion emission measurements. Meas. Sci. Technol. 9, 327–338 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    D.M. Sonnenfroh, M.G. Allen, Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser. Appl. Opt. 36, 3298 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode-laser absorption measurements of CO2 near 2.0 μm at elevated temperatures. Appl. Opt. 37, 8341 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design. Appl. Phys. B 94, 51–63 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Webber, R. Claps, F.V. Englich, F.K. Tittel, J.B. Jeffries, R.K. Hanson, Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases. Appl. Opt. 40, 4395 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    W. Ren, J.B. Jeffries, R.K. Hanson, Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO2 near 2.7 μm. Meas. Sci. Technol. 21, 105603 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 055107 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2008), p. 597Google Scholar
  14. 14.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459–1468 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J. Vanderover, W. Wang, M.A. Oehlschlaeger, A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy. Appl. Phys. B 103, 959–966 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson, TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing, in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (2012)Google Scholar
  17. 17.
    S.H. Pyun, J.M. Porter, J.B. Jeffries, R.K. Hanson, J.C. Montoya, M.G. Allen, K.R. Sholes, Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature. Appl. Opt. 48, 6492–6500 (2009)CrossRefGoogle Scholar
  18. 18.
    M.Y. Perrin, J.M. Hartmann, Temperature-dependent measurements and modeling of absorption by CO2–N2 mixtures in the far line-wings of the 4.3 μm CO2 band. J. Quant. Spectrosc. Radiat. Transf. 42, 311–317 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons. J. Quant. Spectrosc. Radiat. Transf. 107, 407–420 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    X. Chao, J.B. Jeffries, R.K. Hanson, In situ absorption sensor for NO in combustion gases with a 5.2 μm quantum-cascade laser. Proc. Combust. Inst. 33, 725–733 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161–173 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 micron. Appl. Opt. 48, 6740–6753 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    R. Sur, K. Sun, J. B. Jeffries, R. K. Hanson, Multi-species laser absorption sensors for in situ monitoring of syngas composition. Appl. Phys. B (2013). doi: 10.1007/s00340-013-5567-2
  24. 24.
    R.T. Pack, Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence. J. Chem. Phys. 70, 3424 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    L. Rosenmann, J.M. Hartmann, M.Y. Perrin, J. Taine, Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2,400-K temperature range. Appl. Opt. 27, 3902–3906 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    F. Thibault, B. Calil, J. Buldyreva, M. Chrysos, J.-M. Hartmann, J.-P. Bouanich, Experimental and theoretical CO2–Ar pressure-broadening cross sections and their temperature dependence. Phys. Chem. Chem. Phys. 3, 3924–3933 (2001)CrossRefGoogle Scholar
  27. 27.
    M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, High-temperature thermal decomposition of isobutane and n-butane behind shock waves. J. Phys. Chem. A 108, 4247–4253 (2004)CrossRefGoogle Scholar
  28. 28.
    I. Stranic, D.P. Chase, J.T. Harmon, S. Yang, D.F. Davidson, R.K. Hanson, Shock tube measurements of ignition delay times for the butanol isomers. Combust. Flame 159, 516–527 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Farooq, D.F. Davidson, R.K. Hanson, L.K. Huynh, A. Violi, An experimental and computational study of methyl ester decomposition pathways using shock tubes. Proc. Combust. Inst. 32, 247–253 (2009)CrossRefGoogle Scholar
  30. 30.
    W. Ren, R.M. Spearrin, D.F. Davidson, R.K. Hanson, Thermal decomposition of C3-C5 ethyl esters: CO, H2O and CO2 time-histories behind reflected shock waves, in The 8th National Combustion Mtg (2013), p. 11Google Scholar
  31. 31.
    L.K. Huynh, K.C. Lin, A. Violi, Kinetic modeling of methyl butanoate in shock tube. J. Phys. Chem. A 112, 13470–13480 (2008)CrossRefGoogle Scholar
  32. 32.
    I. Stranic, D.F. Davidson, R.K. Hanson, Shock tube measurements of the rate constant for the reaction cyclohexene → ethylene + 1,3-butadiene. Chem. Phys. Lett. 584, 18–23 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. M. Spearrin
    • 1
  • W. Ren
    • 1
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations