Advertisement

Applied Physics B

, Volume 116, Issue 4, pp 793–798 | Cite as

Coherence-based axial point-spread function engineering for two-photon excited polymerization

  • Sven Dobner
  • Martin Höhl
  • Niklas M. Lüpken
  • Carsten Fallnich
Article
  • 266 Downloads

Abstract

We show in proof-of-principle experiments an axial resolution improvement in two-photon-excited fluorescence and polymerization enabled by the short coherence length of two counter-propagating ultrashort laser pulses. The interference of these pulses generate a spatial interference fringe pattern, whose width scales inversely to the spectral bandwidth and is therefore considerably shorter than the effective focal length of a laser beam conventionally focused from only one side.

Keywords

Fringe Pattern Spectral Bandwidth Incident Pulse Interference Fringe Pattern Axial Extent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nat. Biotechnol. 21, 1369 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 22, 132 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    R. Guo et al., Opt. Express 14, 810 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    H.-B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 786 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    B. Cumpston, S. Ananthavel, S. Barlow, Nature 398, 51 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12, 5221 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M.P. Joshi, H.E. Pudavar, J. Swiatkiewicz, P.N. Prasad, B.A. Reianhardt, Appl. Phys. Lett. 74, 170 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    L. Luo et al., J. Opt. A-Pure Appl. Opt. 3, 489 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    S. Klein et al., Appl. Phys. Lett. 86, 211118 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    J. Ishihara, K. Komatsu, O. Sugihara, T. Kaino, Appl. Phys. Lett. 90, 033511 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Takada, H.-B. Sun, S. Kawata, Appl. Phys. Lett. 86, 071122 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    V. Paz, M. Emons, K. Obata, J. Laser Appl. 24, 1 (2012)Google Scholar
  13. 13.
    M. Emons et al., Opt. Mater. Express 2, 942 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.-B. Sun, T. Tanaka, S. Kawata, Appl. Phys. Lett. 80, 3673 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland, Annu. Rev. Biomed. Eng. 2, 399 (2000)CrossRefGoogle Scholar
  17. 17.
    S.W. Hell, J. Wichmann, Opt. Lett. 19, 780 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    T. Klar, E. Engel, S. Hell, Phys. Rev. E 64, 066613 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    S.W. Hell, Nat. Biotechnol. 21, 1347 (2003)CrossRefGoogle Scholar
  20. 20.
    J. Fischer, G. von Freymann, M. Wegener, Adv. Mater. 22, 3578 (2010)CrossRefGoogle Scholar
  21. 21.
    R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, T.A. Klar, Opt. Express 21, 10831 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S. Hell, E. Stelzer, Opt. Commun. 93, 277 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Giordmaine, Appl. Phys. Lett. 11, 216 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    H. Weber, Phys. Lett. A 27, 321 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    A.S. Kewitsch, A. Yariv, Opt. Lett. 21, 24 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sven Dobner
    • 1
  • Martin Höhl
    • 1
  • Niklas M. Lüpken
    • 1
  • Carsten Fallnich
    • 1
  1. 1.Institute of Applied PhysicsWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations