Applied Physics B

, Volume 116, Issue 3, pp 717–727 | Cite as

Scanned-wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in a hydrocarbon-fueled scramjet combustor

  • C. S. Goldenstein
  • I. A. Schultz
  • R. M. Spearrin
  • J. B. Jeffries
  • R. K. Hanson


The design and demonstration of a two-color tunable diode laser sensor for measurements of temperature and H2O in an ethylene-fueled model scramjet combustor are presented. This sensor probes multiple H2O transitions in the fundamental vibration bands near 2.5 μm that are up to 20 times stronger than those used by previous near-infrared H2O sensors. In addition, two design measures enabled high-fidelity measurements in the nonuniform flow field. (1) A recently developed calibration-free scanned-wavelength-modulation spectroscopy spectral-fitting strategy was used to infer the integrated absorbance of each transition without a priori knowledge of the absorption lineshape and (2) transitions with strengths that scale near-linearly with temperature were used to accurately determine the H2O column density and the H2O-weighted path-averaged temperature from the integrated absorbance of two transitions.


Integrate Absorbance Line Pair Tunable Diode Laser Absorption Spectroscopy Scramjet Combustor Nonuniform Flow Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored by the Air Force Office of Scientific Research (AFOSR) and by the National Center for Hypersonic Combined Cycle Propulsion, Grant FA 9550-09-1-0611, with technical monitors Dr. Chiping Li (AFOSR) and Dr. Richard Gaffney (NASA). The authors would like to thank Professor Chris Goyne, Dr. Robert Rockwell, PhD Candidate Brian Rice, and Mr. Roger Reynolds for operating the UVaSCF and hosting the measurement campaign at the University of Virginia.


  1. 1.
    R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Wolfrum, Lasers in combustion: from basic theory to practical devices. Proc. Combust. Inst. 1–41 (1998) Google Scholar
  3. 3.
    M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9, 545–562 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proc. Combust. Inst. 31, 3041–3049 (2007)CrossRefGoogle Scholar
  5. 5.
    D.W. Mattison, J.B. Jeffries, R.K. Hanson, R.R. Steeper, S. De Zilwa, J.E. Dec, M. Sjoberg, W. Hwang, In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration. Proc. Combust. Inst. 31, 791–798 (2007)CrossRefGoogle Scholar
  6. 6.
    L.A. Kranendonk, J.W. Walewski, T. Kim, S.T. Sanders, Wavelength-agile sensor applied for HCCI engine measurements. Proc. Combust. Inst. 30, 1619–1627 (2005)CrossRefGoogle Scholar
  7. 7.
    S.T. Sanders, D.W. Mattison, J.B. Jeffries, R.K. Hanson, Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine. Shock Waves 12, 435–441 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    D.W. Mattison, M.A. Oehlschlaeger, C.I. Morris, Z.C. Owens, E.A. Barbour, J.B. Jeffries, R.K. Hanson, Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements. Proc. Combust. Inst. 30, 2799–2807 (2005)CrossRefGoogle Scholar
  9. 9.
    A.W. Caswell, S. Roy, X. An, S.T. Sanders, F.R. Schauer, J.R. Gord, Measurements of multiple gas parameters in a pulsed-detonation combustor using time-mode-locked lasers. Appl. Opt. 52, 2893–2904 (2013) Google Scholar
  10. 10.
    R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, in 29th International Symposium on Shock Waves. Mid-infrared laser absorption diagnostics for detonation studies (Madison, 2013)Google Scholar
  11. 11.
    C.S. Goldenstein, I.A. Schultz, R.M. Spearrin, J.B. Jeffries, K. Hanson, in 24th International Colloquium on the Dynamics of Explosions and Reactive Systems. Diode laser measurements of temperature and H2O for monitoring pulse detonation combustor performance (Taiwan, 2013)Google Scholar
  12. 12.
    J.T.C. Liu, G.B. Rieker, J.B. Jeffries, M.R. Gruber, C.D. Carter, T. Mathur, R.K. Hanson, Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44, 6701–6711 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Griffiths, A.F.P. Houwing, Diode laser absorption spectroscopy of water vapor in a scramjet combustor. Appl. Opt. 44, 6653–6659 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    C.L. Strand, R.K. Hanson, in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Thermometry and velocimetry in supersonic flows via scanned wavelength-modulation absorption spectroscopy (American Institute of Aeronautics and Astronautics, 2011) AIAA 2011-5600Google Scholar
  15. 15.
    L.S. Chang, J.B. Jeffries, R.K. Hanson, Mass flux sensing via tunable diode laser absorption of water vapor. AIAA J 48, 2687–2693 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    I.A. Schultz, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, R.D. Rockwell, C.P. Goyne, TDL absorption sensor for in situ determination of combustor progress in scramjet combustor ground testing. J. Propuls. Power (2014) (in press)Google Scholar
  17. 17.
    F. Li, X. Yu, W. Cai, L. Ma, Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows. Appl. Opt. 51, 4788–4797 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K.H. Lyle, J.B. Jeffries, R.K. Hanson, M. Winter, Diode-laser sensor for air-mass flux 2: non-uniform flow modeling and aeroengine tests. AIAA J 45, 2213–2223 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    L.A. Kranendonk, A.W. Caswell, C.L. Hagen, C.T. Neuroth, D.T. Shouse, J.R. Gord, S.T. Sanders, Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy. J. Propuls. Power 25, 859–863 (2009)CrossRefGoogle Scholar
  20. 20.
    L. Ma, X. Li, S.T. Sanders, A.W. Caswell, S. Roy, D.H. Plemmons, J.R. Gord, 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt. Express 21, 1152–1162 (2013) Google Scholar
  21. 21.
    C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 52, 7950 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy. Appl. Opt. 42, 2110–2118 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53, 356–367 (2014)Google Scholar
  24. 24.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J.A. Silver, Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods. Appl. Opt. 31, 707–717 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    D.S. Bomse, A.C. Stanton, J.A. Silver, Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser. Appl. Opt. 31, 718–731 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38, 5803–5815 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 1052–1061 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)CrossRefGoogle Scholar
  30. 30.
    L.C. Philippe, R.K. Hanson, Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 32, 6090–6103 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    T. Fernholz, H. Teichert, V. Ebert, Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions. Appl. Phys. B Lasers Opt. 75, 229–236 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    R.T. Wainner, B.D. Green, M.G. Allen, M.A. White, J. Stafford-Evans, R. Naper, Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes. Appl. Phys. B Lasers Opt. 75, 249–254 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers. Proc. Combust. Inst. 30, 1611–1618 (2005)CrossRefGoogle Scholar
  34. 34.
    D.T. Cassidy, J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 21, 1185–1190 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Analysis of calibration-free wavelength-scanned modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 24, 12 (2013)Google Scholar
  36. 36.
    C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm. J. Quant. Spectrosc. Radiat. Transf. 130, 100–111 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Appl. Phys. B 81, 711–722 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A. Farooq, J.B. Jeffries, R.K. Hanson, In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption. Meas. Sci. Technol. 19, 075604 (2008)Google Scholar
  40. 40.
    I.A. Schultz, C.S. Goldenstein, M. Spearrin, J.B. Jeffries, R.K. Hanson, Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Propuls. Power. (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. S. Goldenstein
    • 1
  • I. A. Schultz
    • 1
  • R. M. Spearrin
    • 1
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations