Applied Physics B

, Volume 116, Issue 3, pp 705–716 | Cite as

Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases

  • C. S. Goldenstein
  • R. M. Spearrin
  • J. B. Jeffries
  • R. K. Hanson
Article

Abstract

The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

References

  1. 1.
    R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)CrossRefGoogle Scholar
  2. 2.
    S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines. Proc. Combust. Inst. 28, 587–594 (2000)CrossRefGoogle Scholar
  3. 3.
    L.A. Kranendonk, J.W. Walewski, T. Kim, S.T. Sanders, Wavelength-agile sensor applied for HCCI engine measurements. Proc. Combust. Inst. 30, 1619–1627 (2005)CrossRefGoogle Scholar
  4. 4.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proc. Combust. Inst. 31, 3041–3049 (2007)CrossRefGoogle Scholar
  5. 5.
    G.B. Rieker, H. Li, X. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures. Meas. Sci. Technol. 18, 1195–1204 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing. Appl. Phys. B. 110, 497–508 (2012)Google Scholar
  7. 7.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra. Appl. Opt. 43, 6500–6509 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    V. Nagali, J.T. Herbon, D.C. Horning, D.F. Davidson, R.K. Hanson, Shock-tube study of high-pressure H2O spectroscopy. Appl. Opt. 38, 6942–6950 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, Measurements of multiple gas parameters in a pulsed-detonation combustor using time- mode-locked lasers. Appl. Opt. 52, 2893–2904 (2013)Google Scholar
  10. 10.
    J. Wang, S.T. Sanders, J.B. Jeffries, R.K. Hanson, Oxygen measurements at high pressures with vertical cavity surface-emitting lasers. Appl. Phys. B 72, 865–872 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    G.B. Rieker, X. Liu, H. Li, J.B. Jeffries, R.K. Hanson, Measurements of near-IR water vapor absorption at high pressure and temperature. Appl. Phys. B 87, 169–178 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    B.H. Armstrong, Spectrum line profiles: the Voigt function. J. Quant. Spectrosc. Radiat. Transf. 7, 61–88 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    F. Herbert, Spectrum line profiles: a generalized Voigt function including collisional narrowing. J. Quant. Spectrosc. Radiat. Transf. 14, 943–951 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    P.L. Varghese, R.K. Hanson, Collisional narrowing effects on spectral line shapes measured at high resolution. Appl. Opt. 23, 2376–2385 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    L. Galatry, Simultaneous effect of Doppler and foreign gas broadening on spectral lines. Phys. Rev. 122, 1218–1223 (1961)ADSCrossRefMATHGoogle Scholar
  16. 16.
    R.H. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953)ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm. J. Quant. Spectrosc. Radiat. Transf. 130, 100–111 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J. Reid, D. Labrie, Second-harmonic detection with tunable diode lasers—comparison of experiment and theory. Appl. Phys. B 26, 203–210 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    D.T. Cassidy, L.J. Bonnell, Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm. Appl. Opt. 27, 2688–2693 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    D.T. Cassidy, J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 21, 1185–1190 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    T. Fernholz, H. Teichert, V. Ebert, Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions. Appl. Phys. B Lasers Opt. 75, 229–236 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Kluczynski, Å.M. Lindberg, O. Axner, Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles. J. Quant. Spectrosc. Radiat. Transf. 83, 345–360 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38, 5803–5815 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, R. K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53, 356–367 (2014)Google Scholar
  26. 26.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Toth, L.R. Brown, M.A.H. Smith, V. Malathy Devi, D. Chris Benner, M. Dulick, Air-broadening of H2O as a function of temperature: 696–2163 cm−1. J. Quant. Spectrosc. Radiat. Transf. 101, 339–366 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    G. Wagner, M. Birk, R.R. Gamache, J.-M. Hartmann, Collisional parameters of lines: effect of temperature. J. Quant. Spectrosc. Radiat. Transf. 92, 211–230 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, Collisional broadening of rotation–vibration lines for asymmetric-top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range. J. Chem. Phys. 86, 144 (1987)ADSGoogle Scholar
  30. 30.
    J.M. Hartmann, M.Y. Perrin, Q. Ma, R.H. Tipping, The infrared continuum of pure water vapor: calculations and high-temperature measurements. J. Quant. Spectrosc. Radiat. Transf. 49, 675–691 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    C. S. Goldenstein, R. M. Spearrin, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, Wavelength-modulation spectroscopy near 1.4 μm for measurements of H2O and temperature in high-pressure and -temperature gases. Meas. Sci. Technol. (2014) (in press)Google Scholar
  32. 32.
    R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 055107 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Appl. Phys. B 81, 711–722 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    X. An, A. W. Caswell, J. J. Lipor, S. T. Sanders, Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy. J. Quant. Spectrosc. Radiat. Transf. 112, 2355–2362 (2011) Google Scholar
  35. 35.
    P.R. Bevington, D.K. Robinson, Data reduction and error analysis for the physical sciences (McGraw-Hill, New York, 1992)Google Scholar
  36. 36.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines. Meas. Sci. Technol. 16, 2437–2445 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    G. Ben-Dor, O. Igra, and T. Elperin, 2001 Handbook of Shock Waves (2001), p. Ch. 3.1 and 4.1Google Scholar
  38. 38.
    E.L. Petersen, R.K. Hanson, Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy. Appl. Opt. 42, 2110–2118 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm. Appl. Opt. 48, 6740–6753 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. S. Goldenstein
    • 1
  • R. M. Spearrin
    • 1
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations