Applied Physics B

, Volume 116, Issue 3, pp 617–622 | Cite as

Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared

  • Konstantinos Moutzouris
  • Myrtia Papamichael
  • Sokratis C. Betsis
  • Ilias Stavrakas
  • George Hloupis
  • Dimos Triantis
Article

Abstract

We report on experimental measurements of the refractive index of twelve organic solvents at five different wavelengths (450, 532, 632.8, 964 and 1,551 nm) and a temperature of 300 K. Based on these new data visible to near-infrared dispersion relations are constructed. Group-velocity dispersion (GVD) is theoretically calculated. Zero- and negative-GVD situations are identified for two common solvents in near-infrared wavelengths. Via comparison with refractive index data available in bibliography, estimated values of thermo-optic coefficients are also presented.

Keywords

Carbon Tetrachloride Photonic Crystal Fiber Isoamyl Alcohol Visible Spectral Range Refractive Index Measurement 

Notes

Acknowledgments

For the supply of liquid samples and their advice, the authors wish to thank: Prof. E. M. Papamichael of the University of Ioannina, as well as Prof. D. Vattis and Dr. C. Fountzoula of the Technological Educational Institution of Athens.

References

  1. 1.
    D. Psaltis, S.R. Quake, C. Yang, Nature 442, 381 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    C. Monat, P. Domachuk, B.J. Eggleton, Nat. Photonics 1, 106 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    F.M. Cox, A. Argyros, M.C.J. Large, Opt. Express 14, 4135 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Zhu, X. Chen, Y. Xu, Y. Xia, J. Lightwave Technol. 25, 3051 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    R. Zhang, J. Teipel, X. Zhang, D. Nau, H. Giessen, Opt. Express 12, 1700 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    T. Gissibl, M. Vieweg, M.M. Vogel, M. Aboud Ahmed, T. Graf, H. Giessen, Appl. Phys. B 106, 521 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    L. Guyon, K.M. Hajek, F. Courvoisier, V. Boutou, R. Nuter, A. Vincotte, S. Champeaux, L. Berge, J.-P. Wolf, Appl. Phys. B 90, 383 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Liu, H. Schroeder, S.L. Chin, R. Li, Z. Xu, Opt. Express 13, 10248 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Leekumjorn, S. Gullapalli, M.S. Wong, Phys. Chem. B 116, 13063 (2012)Google Scholar
  10. 10.
    J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 485 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Chen, L. Shao, K.C. Woo, T. Ming, H.-Q. Lin, J. Wang, J. Phys. Chem. C 113, 17691 (2009)CrossRefGoogle Scholar
  12. 12.
    L.A. Gomez, C.B. de Araujo, A.M. Brito-Silva, A. Galembeck, Appl. Phys. B 92, 61 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M.E. Lusty, M.H. Dunn, Appl. Phys. B 44, 193 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    H. El-Kashef, R. Shalaby, Opt. Laser Technol. 44, 71 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    D. Toptygin, J. Fluoresc. 13, 201 (2003)CrossRefGoogle Scholar
  16. 16.
    A.R. Katritzky, S. Sild, M. Karelson, J. Chem. Inf. Comput. Sci. 38, 840 (1998)Google Scholar
  17. 17.
    N. Tekin, C. Tarimci, Opt. Laser Technol. 38, 498 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    K. Moutzouris, I. Stavrakas, D. Triantis, M. Enculescu, Opt. Mat. 33, 812 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Rullière, Femtosecond Laser Pulses: Principles and Experiments (Springer, New York, 2005)CrossRefGoogle Scholar
  20. 20.
    P. Devi, V.V. Lozovoy, M. Dantus, AIP Adv. 1, 032166 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    T.D. Scarborough, C. Petersen, C.J.G.J. Uiterwaal, New J. Phys. 10, 103011 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M. Gupta, I. Vibhu, J.P. Shukla, Phys. Chem. Liq. 48, 415 (2010)Google Scholar
  23. 23.
    E.W. Flick, Industrial Solvents Handbook, 5th edn. (Noyes Data Corporation Publ, Westwood, NJ, USA, 1998)Google Scholar
  24. 24.
    A. Rodriguez, J. Canosa, J. Tojo, J. Chem. Eng. Data 46, 1506 (2001)CrossRefGoogle Scholar
  25. 25.
    J.P. Hawranek, N. Michniewicz, W. Wrzeszcz, M. Pajdowska, J. Non-Cryst. Solids 353, 4555 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    I.Z. Kozma, P. Krok, E. Riedle, J. Opt. Soc. Am. B 22, 1479 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    A. Samoc, J. Appl. Phys. 94, 6167 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Opt. Mater. Express 2, 1588 (2012)CrossRefGoogle Scholar
  29. 29.
    M.N. Roy, R.S. Sah, P. Pradhan, Int. J. Thermophys. 31, 316 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S. Chen, Q. Lei, W. Fang, J. Chem. Eng. Data 47, 811 (2002)CrossRefGoogle Scholar
  31. 31.
    M.H. Frosz, A. Stefani, O. Bang, Opt. Express 19, 10471 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    I. Akihiko, G. Akikazu, Trans. Jpn. Soc. Mech. Eng. B 576, 2875 (1994)Google Scholar
  33. 33.
    J.E. Bertie, Z. Lan, J. Chem. Phys. 103, 10152 (1995)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Konstantinos Moutzouris
    • 1
  • Myrtia Papamichael
    • 1
  • Sokratis C. Betsis
    • 1
  • Ilias Stavrakas
    • 1
  • George Hloupis
    • 1
  • Dimos Triantis
    • 1
  1. 1.Laboratory of Electric Characterization of Materials and Electronic Devices, Department of Electronic EngineeringTechnological Educational Institution of AthensAthensGreece

Personalised recommendations