Advertisement

Applied Physics B

, Volume 116, Issue 3, pp 593–601 | Cite as

Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range

  • Vladimir Dolgovskiy
  • Stéphane Schilt
  • Nikola Bucalovic
  • Gianni Di Domenico
  • Serge Grop
  • Benoît Dubois
  • Vincent Giordano
  • Thomas Südmeyer
Article

Abstract

We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry–Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured −125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.

Keywords

Phase Noise Microwave Signal Frequency Comb Whisper Gallery Mode Optical Frequency Comb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work at Laboratoire Temps-Fréquence was financed by the Swiss National Science Foundation (SNSF) and by the Swiss Confederation Program Nano-Tera.ch, scientifically evaluated by SNSF. Authors from Femto-ST are grateful to the Fond Européen de Dévelopment Régional (FEDER), the Regional Council of Franche-Comté and OSEO for their support to the ULISS project. We thank L.-G. Bernier (METAS) for fruitful discussions about the impact of frequency counters on stability measurements.

References

  1. 1.
    M. Armano et al., LISA Pathfinder: the experiment and the route to LISA. Class. Quantum Gravity 26(9), 094001 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    S. Weyers, B. Lipphardt, H. Schnatz, Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser. Phys. Rev. A 79, 031803 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J. Millo, M. Abgrall, M. Lours, E.M.L. English, H. Jiang, J. Guéna, A. Clairon, S. Bize, Y. Le Coq, G. Santarelli, M.E. Tobar, Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett. 94, 141105 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J.G. Hartnett, N.R. Nand, E.N. Ivanov, G. Santarelli, Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator. IEEE Trans. Microw. Theory Tech. 59, 2978 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J.G. Hartnett, N.R. Nand, C. Lu, Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators. Appl. Phys. Lett. 100, 183501 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    J. Ye, J.L. Hall, S.A. Diddams, Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum. Opt. Lett. 25(22), 1675–1677 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82(19), 3799–3802 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J. Millo, D.Y. Magalhães, C. Mandasche, Y. Le Coq, E.M.L. English, P.G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Ultra-stable lasers based on vibration insensitive cavities. Phys. Rev. A 77(3), 033847 (2008)CrossRefGoogle Scholar
  10. 10.
    A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15. Opt. Lett. 32(6), 641–643 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 6, 687–692 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T.M. Fortier, M.S. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C.W. Oates, S.A. Diddams, Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 5, 425–429 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Millo, M. Abgrall, M. Lours, E.M.L. English, H. Jiang, J. Guéna, A. Clairon, S. Bize, Y. Le Coq, G. Santarelli, Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett. 94, 141105 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    F. Quinlan, T.M. Fortier, M.S. Kirchner, J.A. Taylor, M.J. Thorpe, N. Lemke, A.D. Ludlow, Y. Jiang, S.A. Diddams, Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. Opt. Lett. 36, 3260–3262 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    W. Zhang, Z. Xu, M. Lours, R. Boudot, Z. Kersal, A.N. Luiten, Y. Le Coq, G. Santarelli, Advanced noise reduction techniques for ultra-low noise optical-to-microwave division with femtosecond fiber combs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 900–908 (2011)CrossRefGoogle Scholar
  16. 16.
    D.D. Hudson, K.W. Holman, R.J. Jones, S.T. Cundiff, J. Ye, D.J. Jones, Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Opt. Lett. 30(21), 2948–2950 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    T.K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C.H. Nam, J. Kim, Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers. Opt. Lett. 36, 4443–4445 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Diddams, M. Kirchner, T. Fortier, D. Braje, A.M. Weiner, L. Hollberg, Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. Opt. Express 17, 3331–3340 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Haboucha, W. Zhang, T. Li, M. Lours, A.N. Luiten, Y. Le Coq, G. Santarelli, Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. 36(18), 3654–3656 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    H. Jiang, J. Taylor, F. Quinlan, T. Fortier, S.A. Diddams, Noise floor reduction of an Er:fiber laser-based photonic microwave generator. IEEE Photonics J. 3(6), 1004–1012 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M.C. Stumpf, G. Di Domenico, S. Pekarek, A.E.H. Oehler, T. Südmeyer, U. Keller, P. Thomann, Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM modelocked 1.5-μm solid-state laser. Opt. Express 19, 24171 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Meyer, S. Lecomte, J. Taylor, S.A. Diddams, Low-noise microwave signals from a frequency-stabilized Yb:tungstate optical frequency comb, in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper PDA_4Google Scholar
  23. 23.
    S.A. Meyer, T.M. Fortier, S. Lecomte, S.A. Diddams, A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation. Appl. Phys. B (on-line), doi: 10.1007/s00340-013-5439-9
  24. 24.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B. 31, 97–105 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, S. Li, Low noise planar external cavity laser for interferometric fiber optic sensors. Proc. SPIE 7316, 73160X (2009) Google Scholar
  26. 26.
    K. Numata, J. Camp, M.A. Krainak, L. Stolpner, Performance of planar-waveguide external cavity laser for precision measurements. Opt. Express 18(22), 22781 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    C. Clivati, A. Mura, D. Calonico, F. Levi, G.A. Costanzo, C.E. Calosso, A. Godone, Planar-waveguide external cavity laser stabilization for an optical link with 10−19 frequency stability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(12), 2582–2587 (2011)CrossRefGoogle Scholar
  28. 28.
    B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, Prototype of an ultra-stable optical cavity for space applications. Opt. Express 20, 25409–25420 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    V. Giordano, S. Grop, B. Dubois, P.-Y. Bourgeois, Y. Kersalé, G. Haye, V. Dolgovskiy, N. Bucalovic, G. Di Domenico, S. Schilt, J. Chauvin, D. Valat, E. Rubiola, New-generation cryogenic sapphire microwave oscillators for space, metrology and scientific applications. Rev. Sci. Instrum. 83(8), 085113 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    V. Dolgovskiy, S. Schilt, G. Di Domenico, N. Bucalovic, C. Schori, P. Thomann, 1.5-μm cavity-stabilized laser for ultra-stable microwave generation, in Proc. IFCS&EFTF Joint Conference, San Francisco, USA, May 2–5, 2011Google Scholar
  31. 31.
    S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, P. Thomann, Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb. Rev. Sci. Instrum. 82(12), 123116 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    G. Di Domenico, S. Schilt, P. Thomann, Simple approach to the relation between laser frequency noise and laser lineshape. Appl. Opt. 49(25), 4801–4807 (2010)CrossRefGoogle Scholar
  33. 33.
    H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, U. Keller, Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    M. Prevedelli, T. Freegarde, T.W. Hänsch, Phase locking of grating-tuned diode lasers. Appl. Phys. B 60, S241 (1995)Google Scholar
  35. 35.
    S. Grop, P.Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, V. Giordano, ELISA: a cryocooled 10 GHz oscillator with 10−15 frequency stability. Rev. Sci. Instrum. 81, 025102 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    D.W. Allan, Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)CrossRefGoogle Scholar
  37. 37.
    E. Rubiola, On the measurement of frequency and its sample variance with high-resolution counters. Rev. Sci. Instrum. 76, 054703 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    S.T. Dawkins, J.J. McFerran, A.N. Luiten, Considerations on the measurement of the stability of oscillators with frequency counters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 918–925 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Bara, J.-M. Le Floch, M.E. Tobar, P.L. Stanwix, S.R. Parker, J.G. Hartnett, E.N. Ivanov, Generation of 103.75 GHz CW source with 5.10−16 frequency instability using cryogenic sapphire oscillators. IEEE Micrw. Wirel. Compon. Lett. 22(2), 85–87 (2012)Google Scholar
  40. 40.
    P. Lesage, Characterization of frequency stability: bias due to the juxtaposition of time-interval measurements. IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983)CrossRefGoogle Scholar
  41. 41.
    B. Bernhardt, T.W. Hänsch, R. Holzwarth, Implementation and characterization of a stable optical frequency distribution system. Opt. Express 17(19), 16849–16860 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    S.A. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Thermal-noise-limited optical cavity. Phys. Rev. A 77(3), 033847 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    V. Dolgovskiy, N. Bucalovic, P. Thomann, C. Schori, G. Di Domenico, S. Schilt, Cross-influence between the two servo-loops of a fully-stabilized Er:fiber optical frequency comb. J. Opt. Soc. Am. B 29(10), 2944–2957 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    G. Marra, R. Slavík, H.S. Margolis, S.N. Lea, P. Petropoulos, D.J. Richardson, P. Gill, High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. Opt. Lett. 36(4), 511–513 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir Dolgovskiy
    • 1
  • Stéphane Schilt
    • 1
  • Nikola Bucalovic
    • 1
  • Gianni Di Domenico
    • 1
  • Serge Grop
    • 2
  • Benoît Dubois
    • 2
  • Vincent Giordano
    • 2
  • Thomas Südmeyer
    • 1
  1. 1.Laboratoire Temps-Fréquence, Institut de physiqueUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.Time and Frequency Department, UMR 6174 CNRS, FEMTO-ST InstituteUFC, ENSMMBesançon CedexFrance

Personalised recommendations