Applied Physics B

, Volume 116, Issue 2, pp 455–466 | Cite as

Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals

  • V. Jambunathan
  • X. Mateos
  • M. C. Pujol
  • J. J. Carvajal
  • C. Zaldo
  • U. Griebner
  • V. Petrov
  • M. Aguiló
  • F. Díaz


We present the crystal growth, optical spectroscopy, and room temperature continuous-wave (CW) laser operation of monoclinic Ho:KLu(WO4)2 crystals. Macro defect-free crystals of several dopant concentrations were grown by top-seeded solution growth slow-cooling method. The evolution of unit cell parameters with holmium doping level and temperature was studied using X-ray powder diffraction. The spectroscopic properties were characterized in terms of room- and low-temperature optical absorption and photoluminescence. From low-temperature optical absorption measurements, the energy of the Stark levels was determined. Calculation of the emission and gain cross sections is presented. CW laser action was realized for 3 and 5 at. % Ho-doped KLu(WO4)2 by in-band pumping using a Tm:KLu(WO4)2 pump laser. A maximum output power of 507 mW with a slope efficiency of ~38 % with respect to the incident power was achieved at 2,080 nm with the Ho:KLu(WO4)2 laser.


Unit Cell Parameter Absorption Cross Section Output Coupler Optical Parametric Oscillator Emission Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Spanish Government under projects MAT2011-29255-C02, PI09/90527, and the Catalan Authority under project 2009SGR235. This work has been partially funded by the European Commission under the Seventh Framework Programme, under projects Cleanspace, FP7-SPACE-2010-1-GA-263044. The research leading to these results has also received funding from LASERLAB-EUROPE (Grant agreement No. 284464, EC’s Seventh Framework Programme).


  1. 1.
    S. Pierre, G.M. Preminger, World J. Urol. 25, 235 (2007)CrossRefGoogle Scholar
  2. 2.
    R. Targ, M.J. Kavaya, R.M. Huffaker, R.L. Bowles, Appl. Opt. 30, 2013 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    S.W. Henderson, C.P. Hale, J.R. Magee, M. Kavaya, A.V. Jand Huffaker, Opt. Lett. 16, 773 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, J. Opt. Soc. Am. B 17, 723 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    V. Sudesh, K. Asai, J. Opt. Soc. Am. B 20, 1829 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    A. Sato, K. Asai, K. Mizutani, Opt. Lett. 29, 836 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Stoneman, L. Esterowitz, Opt. Lett. 17, 736 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    S. So, J.I. Mackenzie, D.P. Shepherd, W.A. Clarkson, J.G. Betterton, E.K. Gorton, J.A.C. Terry, Opt. Express 14, 0481 (2006)CrossRefGoogle Scholar
  9. 9.
    D. Xiao-Ming, Y. Bao-Quan, Z. Yun-Jun, S. Cheng-Wei, G. Jing, J. You-Lun, W. Yue-Zhu, Chin. Phys. Lett. 25, 1693 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    B.Q. Yao, L.L. Zheng, R.L. Zhou, X.M. Duan, Y.J. Zhang, Y.L. Ju, Z. Wang, G.J. Zhao, Q. Dong, Laser Phys. 18, 1501 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B.Q. Yao, X.M. Duan, L.L. Zheng, Y.L. Ju, Y.Z. Wang, G.J. Zhao, Q. Dong, Opt. Express 16, 14668 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    D.Y. Shen, A. Abdolvand, L.J. Cooper, W.A. Clarkson, Appl. Phys. B 79, 559 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    V. Petrov, M.C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R.M. Solé, J. Liu, U. Griebner, F. Díaz, Laser Photon. Rev. 1, 179 (2007)CrossRefGoogle Scholar
  14. 14.
    M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Phys. Rev. B 65, 165121–1 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    X. Mateos, V. Petrov, J. Liu, M.C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, G. Viera, IEEE J. Quantum Electron. 42, 1008 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, F. Díaz, J. Cryst. Growth 169, 600 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    R. Solé, Ò. Silvestre, J. Massons, J. Gavaldà, M. Aguiló, F. Díaz, J. Cryst. Growth 310, 1167 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Suriñac, J. Massons, F. Díaz, M. Aguiló, J. Appl. Cryst. 39, 230 (2006)CrossRefGoogle Scholar
  19. 19.
    J. Rodriguez-Carvajal, An Introduction to the Program Full Prof 2000 (Laboratorie Léon Brillouin CEA-CNRS Saclay, France, 2001)Google Scholar
  20. 20.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  21. 21.
    M.C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, C. Zaldo, IEEE J. Quantum Electron. 38, 93 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Kruple, IEEE J. Quantum Electron. 28, 2619 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    M. Segura, M. Kadankov, X. Mateos, M.C. Pujol, J.J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, Laser Phys. Lett. 9, 104 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    X. Mateos, V. Jambunathan, M.C. Pujol, J.J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, V. Petrov, Opt. Express 18, 20793 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Jambunathan
    • 1
  • X. Mateos
    • 1
    • 2
  • M. C. Pujol
    • 1
  • J. J. Carvajal
    • 1
  • C. Zaldo
    • 3
  • U. Griebner
    • 2
  • V. Petrov
    • 2
  • M. Aguiló
    • 1
  • F. Díaz
    • 1
  1. 1.Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)Universitat Rovira i Virgili (URV)TarragonaSpain
  2. 2.Max-Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany
  3. 3.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations