Advertisement

Applied Physics B

, Volume 116, Issue 2, pp 393–406 | Cite as

Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

  • Julian Skrotzki
  • Jan Christoph Habig
  • Volker Ebert
Article

Abstract

The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg–Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of <1 % between both fitting algorithms. The properties of the AI fitting algorithm make it an interesting alternative if robustness and speed are crucial in an application and if the restriction to a single absorption line is possible. These conditions are fulfilled for the 1,370 nm TDLAS hygrometry at the aerosol and cloud chamber aerosol interactions and dynamics in the atmosphere (AIDA)—a unique large-scale facility to study atmospheric processes. The robustness of the AI fitting algorithm has been validated for typical AIDA conditions encompassing strong transmission fluctuations during the formation of droplet or ice clouds inside AIDA. Under these conditions, the stability of the AI algorithm remained virtually unaffected. Thus, the AI algorithm presents an alternative technique for a fast, reliable, and accurate online data evaluation of the humidity measurements at AIDA.

Keywords

Absorption Line Tunable Diode Laser Absorption Spectroscopy Direct Absorption Spectroscopy Advanced Integrative Absorption Line Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Helmholtz Association through the Virtual Institute on Aerosol-Cloud Interactions (VI-ACI) [VH-VI-233].

References

  1. 1.
    V. Ebert, J. Wolfrum, Absorption spectroscopy, in Optical MeasurementsTechniques and Applications (Springer, Heidelberg, München, 2001), pp. 227–265Google Scholar
  2. 2.
    G.A. Mark, Meas. Sci. Technol. 9, 545 (1998)CrossRefGoogle Scholar
  3. 3.
    P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, B. Janker, Opt. Lasers Eng. 37, 101–114 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, Laser-based combustion diagnostics, in Encyclopedia of Analytical Chemistry (Wiley, Hoboken, 2006)Google Scholar
  5. 5.
    V. Ebert, J.W. Fleming, Optical oxygen sensors using tunable diode laser spectroscopy: application to harsh reactive processes, in IEEE Sensors (IEEE, New York City, 2007), pp. 616–619Google Scholar
  6. 6.
    B.H. Armstrong, J. Quant. Spectrosc. Radiat. Transf. 7, 61–88 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.E. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    W. Riedel, H. Preier, W. Kopmeier, J. Staab, Patent DE 2635171 (1978)Google Scholar
  9. 9.
    W. Riedel, R. Grisar, H. Preier, Patent DE 3106331 (1982)Google Scholar
  10. 10.
    B.W. McCaul, D.E. Doggett, E.K. Thorson, Patent US 5448071 (1995)Google Scholar
  11. 11.
    V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, Online monitoring of water vapour with a fiber coupled NIR-diode laser spectrometer, in VDI-Berichte 1366 (VDI, Düsseldorf, 1998), pp. 145–154Google Scholar
  12. 12.
    K.-U. Pleban, Development of optical fiber based NIR diode laser spectrometers with fast evaluation procedures for the in situ gas analysis in waste combustion (in German), PhD thesis (Ruperto-Carola University, Heidelberg, 1998)Google Scholar
  13. 13.
    K.-U. Pleban, V. Ebert, J. Wolfrum, Patent application WO/1999/046579 (1999)Google Scholar
  14. 14.
    D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431–441 (1963)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)Google Scholar
  16. 16.
    S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, Appl. Phys. B 92, 393–401 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, V. Ebert, Appl. Opt. 48, B172–B182 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    E.E. Whiting, J. Quant. Spectrosc. Radiat. Transf. 8, 1379–1384 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977)ADSCrossRefGoogle Scholar
  20. 20.
    H. Preier, R. Grisar, W. Riedel, B. Halford, H. Wolf, U. Klocke, Patent DE 3734401 (1989)Google Scholar
  21. 21.
    X. Ouyang, P.L. Varghese, Appl. Opt. 28, 1538–1545 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    J. Skrotzki, High-accuracy multiphase humidity measurements using TDLAS: application to the investigation of ice growth in simulated cirrus clouds, PhD thesis (Ruperto-Carola University, Heidelberg, 2012)Google Scholar
  23. 23.
    V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, U. Schurath, Tech. Mess. 72, 23–30 (2005)CrossRefGoogle Scholar
  24. 24.
    D.W. Fahey, R.S. Gao, O. Möhler, available online at https://aquavit.icg.kfa-juelich.de/AquaVit/AquaVitWiki (2009)
  25. 25.
    V. Ebert, H. Saathoff, C. Lauer, S. Hunsmann, S. Wagner, Geophysical Research Abstracts 10, EGU2008-A-10066 (2008)Google Scholar
  26. 26.
    O. Möhler, D.G. Georgakopoulos, C.E. Morris, S. Benz, V. Ebert, S. Hunsmann, H. Saathoff, M. Schnaiter, R. Wagner, Biogeosciences 5, 1425–1435 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    I. Steinke, O. Möhler, A. Kiselev, M. Niemand, H. Saathoff, M. Schnaiter, J. Skrotzki, C. Hoose, T. Leisner, Atmos. Chem. Phys. 11, 12945–12958 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    O. Möhler, O. Stetzer, S. Schaefers, C. Linke, M. Schnaiter, R. Tiede, H. Saathoff, M. Krämer, A. Mangold, P. Budz, P. Zink, J. Schreiner, K. Mauersberger, W. Haag, B. Kärcher, U. Schurath, Atmos. Chem. Phys. 3, 211–223 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    O. Möhler, S. Benz, H. Saathoff, M. Schnaiter, R. Wagner, J. Schneider, S. Walter, V. Ebert, S. Wagner, Environ. Res. Lett. 3, 025007 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    B.J. Murray, T.W. Wilson, S. Dobbie, Z.Q. Cui, S. Al-Jumur, O. Möhler, M. Schnaiter, R. Wagner, S. Benz, M. Niemand, H. Saathoff, V. Ebert, S. Wagner, B. Kärcher, Nat. Geosci. 3, 233–237 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A. Mangold, R. Wagner, H. Saathoff, U. Schurath, C. Giesemann, V. Ebert, M. Krämer, O. Möhler, Meteorol. Z. 14, 485–497 (2005)CrossRefGoogle Scholar
  32. 32.
    R.W. Saunders, O. Möhler, M. Schnaiter, S. Benz, R. Wagner, H. Saathoff, P.J. Connolly, R. Burgess, B.J. Murray, M. Gallagher, R. Wills, J.M.C. Plane, Atmos. Chem. Phys. 10, 1227–1247 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    H. Saathoff, K.H. Naumann, O. Möhler, Å.M. Jonsson, M. Hallquist, A. Kiendler-Scharr, T.F. Mentel, R. Tillmann, U. Schurath, Atmos. Chem. Phys. 9, 1551–1577 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    R. Wagner, S. Benz, H. Bunz, O. Möhler, H. Saathoff, M. Schnaiter, T. Leisner, V. Ebert, J. Phys. Chem. A 112, 11661–11676 (2008)CrossRefGoogle Scholar
  35. 35.
    O. Möhler, P.R. Field, P. Connolly, S. Benz, H. Saathoff, M. Schnaiter, R. Wagner, R. Cotton, M. Krämer, A. Mangold, A.J. Heymsfield, Atmos. Chem. Phys. 6, 3007–3021 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    J.U. White, J. Opt. Soc. Am. 32, 285 (1942)ADSCrossRefGoogle Scholar
  37. 37.
    D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523–526 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043–2051 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, Proc. Comb. Inst. 27, 1301–1308 (1998)CrossRefGoogle Scholar
  40. 40.
    V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, Proc. Comb. Inst. 28, 423–430 (2000)CrossRefGoogle Scholar
  41. 41.
    C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, Combustion diagnostics, in Springer Handbook of Experimental Fluid Mechanics (Springer, Heidelberg, 2007), pp. 1241–1315Google Scholar
  42. 42.
    S. Hunsmann, S. Wagner, H. Saathoff, O. Möhler, U. Schurath, V. Ebert, Measurement of line strengths and pressure broadening coefficients of H2O absorption lines in the 1.4 μm band (in German), in VDI-Berichte 1959 (VDI, Düsseldorf, 2006), pp. 149–164Google Scholar
  43. 43.
    R.D. May, J. Geophys. Res. 103, 19161–19172 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, J.P. Burrows, Appl. Opt. 44, 91–102 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julian Skrotzki
    • 1
    • 2
  • Jan Christoph Habig
    • 2
  • Volker Ebert
    • 1
    • 3
    • 4
  1. 1.Institute of Physical ChemistryHeidelberg UniversityHeidelbergGermany
  2. 2.Institute for Meteorology and Climate ResearchKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Physikalisch-Technische BundesanstaltBraunschweigGermany
  4. 4.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations