Applied Physics B

, Volume 114, Issue 1–2, pp 213–230 | Cite as

The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock

  • D. Bakalov
  • S. Schiller


The systematic shifts of the transition frequencies in the molecular hydrogen ions are of relevance to ultra-high-resolution radio-frequency, microwave and optical spectroscopy of these systems, performed in ion traps. We develop the ab initio description of the interaction of the electric quadrupole moment of this class of molecules with the static electric field gradients present in ion traps. In good approximation, it is described in terms of an effective perturbation Hamiltonian. An approximate treatment is then performed in the Born–Oppenheimer approximation. We give an expression of the electric quadrupole coupling parameter valid for all hydrogen molecular ion species and evaluate it for a large number of states of H 2 + , HD+, and D 2 + . The systematic shifts can be evaluated as simple expectation values of the perturbation Hamiltonian. Results on radio-frequency, one-photon electric dipole (E1), and two-photon E1 transitions between hyperfine states in HD+ are reported. For two-photon E1 transitions between rotationless states, the shifts vanish. For a large subset of rovibrational one-photon transitions, the absolute values of the quadrupole shifts range from 0.3 to 10 Hz for an electric field gradient of 108 V/m2. We point out an experimental procedure for determining the quadrupole shift which will allow reducing its contribution to the uncertainty of unperturbed rovibrational transition frequencies to the 1 × 10−15 fractional level and, for selected transitions, even below it. The combined contributions of black-body radiation, Zeeman, Stark and quadrupole effects are considered for a large set of transitions, and it is estimated that the total transition frequency uncertainty of selected transitions can be reduced below the 1 × 10−15 level.



This work has been supported by Grant SCHI 431/19-1 of the Deutsche Forschungsgemeinschaft. We are grateful to V.I. Korobov and A. Bekbaev for making available to us their results of the polarizabilities and of the hyperfine Hamiltonian coefficients.


  1. 1.
    J.C.J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, S. Schiller, Phys. Rev. Lett. 98, 173002 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, S. Schiller, Phys. Rev. Lett. 108, 183003 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    V.I. Korobov, Z.-X. Zhong, Phys. Rev. A 86, 044501 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.-P. Karr, A. Douillet, L. Hilico, Appl. Phys. B 107, 1043–1052 (2012). doi: 10.1007/s00340-011-4757-z ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Bekbaev, V.I. Korobov, M. Dineykhan, Phys. Rev. A 83, 044501 (2011). doi: 10.1103/PhysRevA.83.044501
  6. 6.
    U. Fröhlich, B. Roth, P. Antonini, C. Lämmerzahl, A. Wicht, S. Schiller, in Seminar on Astrophysics, Clocks and Fundamental Constants, eds. by E. Peik, S. Karshenboim. Lecture Notes in Physics, vol. 648 (Springer, Berlin, 2004), p. 297Google Scholar
  7. 7.
    S. Schiller, V.I. Korobov, Phys. Rev. A 71, 032505 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kajita, Phys. Rev. A 77, 012511 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    D. Bakalov, V.I. Korobov, S. Schiller, Phys. Rev. A 82, 055401 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D. Bakalov, V.I. Korobov, S. Schiller, J. Phys. B At. Mol. Opt. Phys. 44, 025003 (2011)Google Scholar
  11. 11.
    D. Bakalov, V.I. Korobov, S. Schiller, J. Phys. B At. Mol. Opt. Phys. 45, 049501 (2012)Google Scholar
  12. 12.
    R.E. Moss, L. Valenzano, Mol. Phys. 100, 1527 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    J.-P. Karr, S. Kilic, L. Hilico, J. Phys. B At. Mol. Opt. Phys. 38, 853 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    J.C.J. Koelemeij, Phys. Chem. Chem. Phys. 13, 18844 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Bakalov, S. Schiller, Hyperfine Interact. 210, 25 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D.R. Bates, G. Poots, Proc. Phys. Soc. (Lond) Sec. A 66, 784 (1953)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    J.M. Peek, A. Hashemi-Attar, C.L. Beckel, J. Chem. Phys. 71, 5382 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    A.G. Posen, A. Dalgarno, J.M. Peek, At. Data Nucl. Data Tables 28, 265–277 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    H.O. Pilón, D. Baye, J. Phys. B: At. Mol. Opt. Phys. 45, 065101 (2012). doi: 10.1088/0953-4075/45/6/065101 ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Bishop, B. Lam, Chem. Phys. Lett. 134, 283–287 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Bishop, B. Lam, Mol. Phys. 65, 679–688 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Bhatia, R.J. Drachman, Phys. Rev. A 61, 032503 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    H.O. Pilón, Quadrupole transitions in the bound rotational–vibrational spectrum of the deuterium molecular ion. arXiv:1302.5234v2Google Scholar
  24. 24.
    D. Bakalov, V.I. Korobov, Phys. Rev. A 57, 1662 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Korobov, D. Bakalov, Phys. Rev. Lett. 79, 3379 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    A.R. Edmonds, Angular Momentum in Quantum, Mechanics. (Princeton University Press, Princeton, 1957)zbMATHGoogle Scholar
  27. 27.
    V.I. Korobov, D. Bakalov, H.J. Monkhorst, Phys. Rev. A 59, R919 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    D. Bakalov, V.I. Korobov, S. Schiller, Phys. Rev. Lett. 97, 243001 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    V.I. Korobov, Phys. Rev. A 77, 022509 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H. Wind, J. Chem. Phys. 42, 2371 (1965)ADSCrossRefGoogle Scholar
  31. 31.
    V.I. Korobov, Phys. Rev. A 74, 052506 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Montgomery, Chem. Phys. Lett. 50, 455–458 (1977). doi: 10.1016/0009-2614(77)80365-5 ADSCrossRefGoogle Scholar
  33. 33.
    N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, E. Peik, Phys. Rev. Lett. 108, 090801 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    J. Shen, A. Borodin, M. Hansen, S. Schiller, Phys. Rev. A 85, 032519 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    W.M. Itano, J. Res. Natl. Inst. Stand. Technol. 105, 829–837 (2000)CrossRefGoogle Scholar
  36. 36.
    W.H. Oskay, S.A. Diddams, E.A. Donley, T.M. Fortier, T.P. Heavner, L. Hollberg, W.M. Itano, S.R. Jefferts, M.J. Delaney, K. Kim, F. Levi, T.E. Parker, J.C. Bergquist, Phys. Rev. Lett. 97, 020801 (2006). doi: 10.1103/Phys.Rev.Lett.97.020801.ADSCrossRefGoogle Scholar
  37. 37.
    V.I. Korobov, A. Bekbaev, S. Schiller, et al., in preparation.Google Scholar
  38. 38.
    D. Bakalov, K. Bakalova, V.I. Korobov, H.J. Monkhorst, I. Shimamura, Phys. Rev. A 57, 3370 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    P.E. Knowles, G.A. Beer, G.R. Mason et al., Phys. Rev. A 56, 1970 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  2. 2.Institut für ExperimentalphysikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations