Applied Physics B

, Volume 114, Issue 1–2, pp 147–155 | Cite as

Ion bunch stacking in a Penning trap after purification in an electrostatic mirror trap

  • M. Rosenbusch
  • D. Atanasov
  • K. Blaum
  • Ch. Borgmann
  • S. Kreim
  • D. Lunney
  • V. Manea
  • L. Schweikhard
  • F. Wienholtz
  • R. N. Wolf


The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver “contaminations”, i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors—if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury–Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with 133Cs+ ions from an off-line ion source and by application to an on-line beam of 179Lu+ ions contaminated with 163Dy16O+ ions. In addition, an optimization of the experimental procedure is given, in particular for the number of ion bunches captured as a function of the ions’ lifetimes and the parameters of the experiment .


Drift Tube Proton Impact Proton Pulse Switching Circuitry ISOLDE Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the German Federal Ministry for Education and Research (BMBF) (Grants No. 05P12HGCI1, 05P12HGFNE and 06DD9054), the Max-Planck Society, the European Union seventh framework through ENSAR (Contract No. 262010), and the French IN2P3. We acknowledge the support of the ISOLDE Collaboration and technical teams. We thank Rudi Henrique Cavaleiro Soares, Baudouin Bleus and Mike Barnes from the CERN TE-ABT group for discussions and advice on the installation of the new HV switch system.


  1. 1.
    H. Wollnik, M. Przewloka, Int. J. Mass Spectrom. Ion Process. 96, 267–274 (1990)CrossRefGoogle Scholar
  2. 2.
    D. Zajfman, O. Heber, L. Vejby-Christensen, I. Ben-Itzhak, M. Rappaport, R. Fishman, M. Dahan, Phys. Rev. A 55, R1577–R1580 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    W.H. Benner, Anal. Chem. 69, 4162–4168 (1997)CrossRefGoogle Scholar
  4. 4.
    A. Naaman, K.G. Bhushan, H.B. Pedersen, N. Altstein, O. Heber, M.L. Rappaport, R. Moalem, D. Zajfman, J. Chem. Phys. 113, 4662 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Toker, O. Aviv, M. Eritt, M.L. Rappaport, O. Heber, D. Schwalm, D. Zajfman, Phys. Rev. A 76, 053201 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    O. Aviv, Y. Toker, M. Errit, K.G. Bhushan, H.B. Pedersen, M.L. Rappaport, O. Heber, D. Schwalm, D. Zajfman, Rev. Sci. Instrum. 79, 083110 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lange, M. Froese, S. Menk, J. Varju, R. Bastert, K. Blaum, J.R. Crespo López-Urrutia, F. Fellenberger, M. Grieser, R. von Hahn, O. Heber, K.-U. Kühnel, F. Laux, D.A. Orlov, M.L. Rappaport, R. Repnow, C.D. Schröter, D. Schwalm, A. Shornikov, T. Sieber, Y. Toker, J. Ullrich, A. Wolf, D. Zajfman, Rev. Sci. Instrum. 81, 055105 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    O. Aviv, Y. Toker, D. Strasser, M.L. Rappaport, O. Heber, D. Schwalm, D. Zajfman, Phys. Rev. A 83, 023201 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M.W. Froese, K. Blaum, F. Fellenberger, M. Grieser, M. Lange, F. Laux, S. Menk, D.A. Orlov, R. Repnow, T. Sieber, Y. Toker, R. von Hahn, A. Wolf, Phys. Rev. A 83, 023202 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Wolf, K. Bhushan, I. Ben-Itzhak, N. Altstein, D. Zajfman, O. Heber, Phys. Rev. A 59, 267–270 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    O. Heber, R. Golser, H. Gnaser, D. Berkovits, Y. Toker, M. Eritt, M. Rappaport, D. Zajfman, Phys. Rev. A 73, 060501R (2006)ADSCrossRefGoogle Scholar
  12. 12.
    H.B. Pedersen, S. Altevogt, B. Jordon-Thaden, O. Heber, L. Lammich, M.L. Rappaport, D. Schwalm, J. Ullrich, D. Zajfman, R. Treusch, N. Guerassimova, M. Martins, A. Wolf, Phys. Rev. A 80, 012707 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A. Verentchikov, M. Yavor, Y. Hasin, M. Gavrik, Tech. Phys. 50, 73–86 (2005)CrossRefGoogle Scholar
  14. 14.
    O. Heber, P.D. Witte, A. Diner, K.G. Bhushan, D. Strasser, Y. Toker, M.L. Rappaport, I. Ben-Itzhak, N. Altstein, D. Schwalm, A. Wolf, D. Zajfman, Rev. Sci. Instrum. 76, 013104 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    W.R. Plaß, T. Dickel, U. Czok, H. Geissel, M. Petrick, K. Reinheimer, C. Scheidenberger, M.I. Yavor, Nucl. Instrum. Methods B 266, 4560–4564 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A. Piechaczek, V. Shchepunov, H. Carter, J. Batchelder, E. Zganjar, S. Liddick, H. Wollnik, Y. Hu, B. Griffith, Nucl. Instrum. Methods Phys. Res. B 266, 4510–4514 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R.N. Wolf, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, F. Wienholtz, K. Zuber, Nucl. Instrum. Methods A 686, 82–90 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menéndez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R.N. Wolf, K. Zuber, Nature 498, 346–349 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Ito, P. Schury, M. Wada, S. Naimi, T. Sonoda, H. Mita, F. Arai, A. Takamine, K. Okada, A. Ozawa, H. Wollnik, Phys. Rev. C 88, 011306(R) (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M. Rosenbusch, S. Kemnitz, R. Schneider, L. Schweikhard, R. Tschiersch, R.N. Wolf, AIP Conf. Proc. 1521, 53–62 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    K. Blaum, Phys. Rep. 425, 1–78 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    L. Schweikhard, G. Bollen (Eds.), Int. J. Mass Spectrom. 251(2–3), 85 (2006)Google Scholar
  23. 23.
    M. Mukherjee, D. Beck, K. Blaum, G. Bollen, J. Dilling, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, S. Schwarz, L. Schweikhard, C. Yazidjian, Eur. Phys. J. A 35, 1–29 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S. Kreim, D. Atanasov, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, T. E. Cocolios, D. Fink, S. George, A. Herlert, A. Kellerbauer, U. Köster, M. Kowalska, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr, T. Nicol, R. E. Rossel, M. Rosenbusch, L. Schweikhard, J. Stanja, F. Wienholtz, R.N. Wolf, K. Zuber, Nucl. Instrum. Methods B (2013, accepted for publication).
  25. 25.
    G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L. Schweikhard, H. Stolzenberg, U. Wiess, Phys. Lett. A 158, 247–252 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    H. Raimbault-Hartmann, D. Beck, G. Bollen, M. Konig, H.-J. Kluge, E. Schark, J. Stein, S. Schwarz, J. Szerypo, Nucl. Instrum. Methods B 126, 378–382 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    A. Herlert, Ch. Borgmann, D. Fink, Ch. Christensen, M. Kowalska, S. Naimi, Hyperfine Interact. 199, 211–220 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    R.N. Wolf, F. Wienholtz, D. Atanasov, D. Beck, K. Blaum, Ch. Borgmannc, F. Herfurth, M. Kowalska, S. Kreim, YuA Litvinov, D. Lunney, V. Manea, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, K. Zuber, Int. J. Mass Spectrom. 349–350, 123–133 (2013)CrossRefGoogle Scholar
  29. 29.
    F. Herfurth, J. Dilling, A. Kellerbauer, G. Bollen, S. Henry, H.-J. Kluge, E. Lamour, D. Lunney, R.B. Moore, C. Scheidenberger, S. Schwarz, G. Sikler, J. Szerypo, Nucl. Instrum. Methods A 469, 254–275 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297(1), 35–39 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    G. Bollen, The ISOLTRAP Collaboration, Phys. Scripta T59, 165–175 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    H.-U. Hasse, St. Becker, G. Dietrich, N. Klisch, H.-J. Kluge, M. Lindinger, K. Lützenkirchen, L. Schweikhard, J. Ziegler, Int. J. Mass Spectrom. Ion Process. 132, 181–191 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    I. Matea, J. Souin, J. Äystö, B. Blank, P. Delahaye, V–.V. Elomaa, T. Eronen, J. Giovinazzo, U. Hager, J. Hakala, J. Huikari, A. Jokinen, A. Kankainen, I.D. Moore, J.-L. Pedroza, S. Rahaman, J. Rissanen, J. Ronkainen, A. Saastamoinen, T. Sonoda, C. Weber, Eur. Phys. J. A 37, 151–158 (2008)CrossRefGoogle Scholar
  34. 34.
    E. Kugler, Hyperfine Interact. 129, 23–42 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    R.N. Wolf, G. Marx, M. Rosenbusch, L. Schweikhard, Int. J. Mass Spectrom. 313, 8–14 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    N. Bradbury, R. Nielsen, Phys. Rev. 49, 388–393 (1936)ADSCrossRefGoogle Scholar
  37. 37.
    M. König, G. Bollen, H.J. Kluge, T. Otto, J. Szerypo, Int. J. Mass Spectrom. 142, 95–116 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    A. Herlert, D. Beck, K. Blaum, F. Carrel, P. Delahaye, S. George, C. Guenaut, F. Herfurth, A. Kellerbauer, H.-J. Kluge, D. Lunney, M. Mukherjee, L. Schweikhard, C. Yazidjian, New. J. Phys. 7, 44 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    J. Lettry, R. Catherall, P. Drumm, P. Van Duppen, A.H.M. Evensen, G.J. Focker, A. Jokinen, O.C. Jonsson, E. Kugler, H. Ravn, ISOLDE Collaboration, Nucl. Instrum. Methods B 126, 130–134 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    J.R.J. Bennett, in Proceedings of the 6th European Particle Accelerator Conference, Stockholm, e-proc. 2383 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Rosenbusch
    • 1
  • D. Atanasov
    • 2
  • K. Blaum
    • 2
  • Ch. Borgmann
    • 2
  • S. Kreim
    • 2
    • 3
  • D. Lunney
    • 4
  • V. Manea
    • 4
  • L. Schweikhard
    • 1
  • F. Wienholtz
    • 1
  • R. N. Wolf
    • 1
  1. 1.Institut für PhysikErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.CERNGeneva 23Switzerland
  4. 4.CSNSM/IN2P3Université de Paris SudOrsayFrance

Personalised recommendations