Advertisement

Applied Physics B

, Volume 116, Issue 2, pp 305–311 | Cite as

Performance improvement of a source by a high-resolution thin-layer-graphite spectrometer and a polycapillary lens

  • M. Iqbal
  • Z. Urrehman
  • H. Im
  • J. G. Son
  • O. Seo
  • H. Stiel
  • P. V. Nickles
  • D. Y. Noh
  • K. A. Janulewicz
Article

Abstract

A tabletop, short-pulse laser-based hard X-ray () source equipped with an advanced X-ray optics and dedicated for high-resolution spectroscopy and time-resolved diffraction is described. Operation of the source together with a high-resolution spectrometer containing a large-aperture highly annealed pyrolytic graphite gave a resolution E/ΔE of ~1,800 for the spectral range around line of Cu. The estimated total flux of the 8.05-keV photons was equal to 5.9 × 1010 ph/s in 4π sr. Performance boost of the source caused by X-ray optics relied on the significant increase in the Cu- photon flux on both, the sample (4.7 × 106 ph/s) and the detector (3.4 × 103 ph/s). A spectral brightness of 1.4 × 107 ph/s/mm2/mrad2 was derived from the source parameters for the line. Better performance due to high collecting power and reflectivity of the spectrometer enabled application of the cross-correlation technique with an Ni foil. An upper bound of emission duration of 323 ± 47 fs was obtained in this measurement. X-ray absorption near-edge spectroscopy on an Ni sample with an acquisition time of only 15 min confirmed the increased capability of the setup also for continuous spectrum (bremsstrahlung).

Keywords

Photon Flux Acceptance Angle Spectral Brightness Polycapillary Lens Bremsstrahlung Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

PVN acknowledges support of the World Class University program (R31-2008-000-10026-0) grant provided by National Research Foundation (NRF) of Korea. HS acknowledges support by the BMBF German-Korean Collaboration Program (no. KOR 10/016). The project was also supported by the Ministry of Education, Science and Technology of Korea through Basic Science Research Program (No. R15-2008-006-03001-0), the Korea-Germany collaboration program of Korean National Research Foundation (no. 2010-00633) and by Gwangju Institute of Science and Technology through a grant from the DASAN fund and the Photonics 2020 project.

References

  1. 1.
    C. Rose-Petruck, R. Jiminez, T. Guo, A. Cavalleri, C. Siders, F. Raksi, J.A. Squier, B.C. Walker, K.R. Wilson, C.P.J. Barty, Nature 398, 310 (1999)CrossRefADSGoogle Scholar
  2. 2.
    F. Zamponi, Z. Ansari, C.V. Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, M. Haschke, Appl. Phys. A 96, 51 (2009)CrossRefADSGoogle Scholar
  3. 3.
    Yan. Jiang, Taewoo. Lee, Christoph.G. Rose-Petruck, J. Opt. Soc. Am. B 20, 1 (2003)CrossRefGoogle Scholar
  4. 4.
    M. Silies, H. Witte, S. Linden, J. Kutzner, I. Uschmann, E. Förster, H. Zacharias, Appl. Phys. A 96, 59 (2009)CrossRefADSGoogle Scholar
  5. 5.
    T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, H. Schwoerer, E. Förster, R. Sauerbrey, Appl. Phys. B 72, 15–20 (2001)CrossRefADSGoogle Scholar
  6. 6.
    J.A. Chakera, A. Ali, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. Lett. 93, 261501 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Yasuaki. Okano, Katsuya. Oguri, Tadashi. Nishikawa, Hidetoshi. Nakano, J. Phys: Conf. Ser. 59, 769 (2007)ADSGoogle Scholar
  8. 8.
    Hidetoshi. Nakano, Yoshinori. Goto, Lu. Peixiang, Tadashi. Nishikawa, Naoshi. Uesugi, Appl. Phys. Lett. 75, 16 (1999)CrossRefGoogle Scholar
  9. 9.
    F. Dorchies, M. Harmand, D. Descamps, C. Fourment, S. Hulin, S. Petit, O. Peyrusse, J.J. Santos, Appl. Phys. Lett. 93, 121113 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Fang. Shan, Ting. Guo, J. Chem. Phys. 122, 244710 (2005)CrossRefADSGoogle Scholar
  11. 11.
    S. Khan, K. Holldack, T. Kachel, R. Mitzner, T. Quast, Phys. Rev. Lett. 97, 074801 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Ch. Reich, P. Gibbon, I. Uschmann, E. Foerster, Phys. Rev. Lett. 84, 4846 (2000)CrossRefADSGoogle Scholar
  13. 13.
    A.O. Er, J. Chen, P.M. Rentzepis, J. Appl. Phys. 112, 031101 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Yaron. Danon, Bryndol. Sones, Robert. Block, Nucl. Instrum. Methods Phys. Res. A 524, 287 (2004)CrossRefADSGoogle Scholar
  15. 15.
    H. Witte, M. Silies, T. Haarlammert, J. Hüve, J. Kutzner, H. Zacharias, Appl. Phys. B 90, 11 (2008)CrossRefADSGoogle Scholar
  16. 16.
    H. Legall, H. Stiel, A. Antonov, I. Grigorieva, V. Arkadiev, A. Bjeoumikhov, A. Erko, Proceedings of FEL (BESSY, Berlin, Germany, 2006), pp. 798–801Google Scholar
  17. 17.
    Herbert. Legall, Holger. Stiel, Matthias. Schnuerer, Marcel. Pagels, Birgit. Kanngießer, Matthias. Mueller, Burkhard. Beckhoff, Inna. Grigorieva, Alexander. Antonov, Vladimir. Arkadiev, Aniouar. Bjeoumikhov, J. Appl. Cryst. 42, 572 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Legall, H. Stiel, V. Arkadiev, A.A. Bjeoumikhov, Opt. Express 14, 10 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Beye, O. Krupin, G. Hays, A.H. Reid, D. Rupp, S. de Jong, S. Lee, W.-S. Lee, Y.-D. Chuang, R. Coffee, J.P. Cryan, J.M. Glownia, A. Fohlisch, M.R. Holmes, A.R. Fry, W.E. White, C. Bostedt, A.O. Scherz, H.A. Durr, W.F. Schlotter, Appl. Phys. Lett. 100, 121108 (2012)CrossRefADSGoogle Scholar
  20. 20.
    S. Schorb, T. Gorkhover, J.P. Cryan, J.M. Glownia, M.R. Bionta, R.N. Coffee, B. Erk, R. Boll, C. Schmidt, D. Rolles, A. Rudenko, A. Rouzee, M. Swiggers, S. Carron, J.-C. Castagna, J.D. Bozek, M. Messerschmidt, W.F. Schlotter, C. Bostedt, Appl. Phys. Lett. 100, 121107 (2012)CrossRefADSGoogle Scholar
  21. 21.
    S.M. Durbin, T. Clevenger, T. Graber, R. Henning, Nat. Photonics 6, 111 (2012)CrossRefADSGoogle Scholar
  22. 22.
    T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, H. Schwoerer, Ch. Reich, P. Gibbon, E. Foerster, R. Sauerbrey, K. Ortner, C.R. Becker, Phys. Rev. E 65, 016412 (2001)CrossRefADSGoogle Scholar
  23. 23.
    K.H. Bunnemann, Ann. Phys. (Berlin) 18, 480 (2009)CrossRefADSGoogle Scholar
  24. 24.
    C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E.F. Aziz, M. Wietstruk, H.A. Dürr, A.N.D.W. Eberhardt, Nat. Mater. 6, 740 (2007)CrossRefADSGoogle Scholar
  25. 25.
    A. Anspoks, A. Kuzmin Jr, Non-Cryst. Solids 357, 2604 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Y.A. Kozinkin, A.A. Novakovich, A.V. Kozinkin, R.V. Vedrinskii, Y.V. Zubavichus, A.A. Veligzhanin, Phys. Solid State 53, 1 (2011)CrossRefADSGoogle Scholar
  27. 27.
    S. Fourmaux, L. Lecherbourg, M. Harmand, M. Servol, J.C. Kieffer, Rev. Sci. Instrum. 78, 113104 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Iqbal
    • 1
  • Z. Urrehman
    • 1
  • H. Im
    • 1
  • J. G. Son
    • 1
  • O. Seo
    • 1
  • H. Stiel
    • 2
  • P. V. Nickles
    • 3
  • D. Y. Noh
    • 1
  • K. A. Janulewicz
    • 1
  1. 1.Department of Physics and Photon ScienceGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  2. 2.Max Born InstituteBerlinGermany
  3. 3.WCU Department of Nanobio Materials and ElectronicsGwangju Institute of Science and TechnologyGwangjuRepublic of Korea

Personalised recommendations