Advertisement

Applied Physics B

, Volume 114, Issue 1–2, pp 243–250 | Cite as

Surface-electrode Paul trap with optimized near-field microwave control

  • M. Carsjens
  • M. Kohnen
  • T. Dubielzig
  • C. Ospelkaus
Article

Abstract

We describe the design of a microfabricated Paul trap with integrated microwave conductors for quantum simulation and entangling logic gates. We focus on an approach where near-field amplitude gradients of microwave fields from conductors in the trap structure induce the required spin-motional couplings. This necessitates a strong amplitude gradient of the microwave near-field at the position of the ions, while the field itself needs to be suppressed as much as possible. We introduce a single meander-like microwave conductor structure which provides the desired field configuration. We optimize its parameters through full-wave microwave numerical simulations of the near-fields. The microwave conductor is integrated with additional dc and rf electrodes to form the actual Paul trap. We discuss the influence of the additional electrodes on the field configuration. To be able to fine-tune the overlap of the Paul trap rf null with the microwave field minimum, our trap design allows relative tuning of trap rf electrode amplitudes. Our optimized geometry could achieve a ratio of sideband-to-carrier excitations comparable to experiments with focused laser beams.

Keywords

Microwave Field Paul Trap Electrode Size Residual Field Field Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank D.T.C. Allcock, Y. Colombe, D. Leibfried, J. Schöbel, D. Slichter, U. Warring, and D. J. Wineland for helpful discussions. We acknowledge funding from QUEST, NTH, PTB, and LUH.

References

  1. 1.
    D.F.V. James, Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B Lasers Opt. 66(2), 181–190 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339(6124), 1164–1169 (2013). PMID: 23471398Google Scholar
  5. 5.
    A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions. Nat. Phys. 4(10), 757–761 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)CrossRefGoogle Scholar
  7. 7.
    P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Spectroscopy using quantum logic. Science 309(5735), 749–752 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy al+ optical clocks. Phys. Rev. Lett. 104(7), 070802 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101(9), 090502 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Chiaverini, W.E. Lybarger, Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77(2), 022324 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    F. Mintert, C. Wunderlich, Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87(25), 257904 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    D.J. Wineland, C.R. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. NIST 103(3), 259 (1998)CrossRefGoogle Scholar
  14. 14.
    D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Microwave quantum logic gates for trapped ions. Nature 476(7359), 181–184 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    U. Warring, C. Ospelkaus, Y. Colombe, R. Jördens, D. Leibfried, D.J. Wineland, Individual-ion addressing with microwave field gradients. Phys. Rev. Lett. 110(17), 173002 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried, D.J. Wineland, Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A 84(3), 030303 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    D.T.C. Allcock, T.P. Harty, C.J. Ballance, N.M. Linke, H.A. Janacek, L. Guidoni, D.P.L. Aude Craik, D.N. Stacey, A.M. Steane and D.M. Lucas (2012) Microwave driven quantum logic gates in 43Ca+. European Conference on Trapped Ions. Obergurgl, AustriaGoogle Scholar
  19. 19.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A, 61(6), 063418 (2000)Google Scholar
  20. 20.
    L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97(10), 103007 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K.R. Brown, I.L. Chuang, Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100(1), 013001 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D.T.C. Allcock, L. Guidoni, T.P. Harty, C.J. Ballance, M.G. Blain, A.M. Steane, D.M. Lucas, Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning. New J. Phys. 13(12), 123023 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109(10), 103001 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    U. Warring, C. Ospelkaus, Y. Colombe, K.R. Brown, J.M. Amini, M. Carsjens, D. Leibfried, D.J. Wineland, Techniques for microwave near-field quantum control of trapped ions. Phys. Rev. A 87(1), 013437 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    D.T.C. Allcock (2011) Surface-Electrode Ion Traps for Scalable Quantum Computing. PhD thesis, Hertford College, OxfordGoogle Scholar
  26. 26.
    D.T.C. Allcock, T.P. Harty, C.J. Ballance, B.C. Keitch, N.M. Linke, D.N. Stacey, D.M. Lucas, A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102(4), 044103 (2013)Google Scholar
  27. 27.
    M.H. Oliveira, J.A. Miranda, Biot–Savart-like law in electrostatics. Eur. J. Phys. 22, 31 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    J.H. Wesenberg, Electrostatics of surface-electrode ion traps. Phys. Rev. A 78(6), 063410 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A.P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, D.J. Wineland, Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105(2), 023001 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Kumph, M. Brownnutt, R. Blatt, Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C.F. Roos, R. Blatt (2009) Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11(2), 023002 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    D. Porras, J.I. Cirac, Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92(20), 207901 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    R. Schmied, J.H. Wesenberg, D. Leibfried, Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102(23), 233002 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Carsjens
    • 1
    • 2
  • M. Kohnen
    • 1
    • 2
  • T. Dubielzig
    • 2
  • C. Ospelkaus
    • 1
    • 2
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany

Personalised recommendations