Applied Physics B

, Volume 114, Issue 1–2, pp 203–211 | Cite as

COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K

  • Oskar Asvany
  • Sandra Brünken
  • Lars Kluge
  • Stephan Schlemmer
Article

Abstract

Two similar 4 K 22-pole trapping machines have been recently completed in our laboratory. As a first experimental test in one of them, CH5+ and H3O+ ions have been trapped in the presence of helium gas at 3.8 K and the kinetics and temperature dependence of He tagging investigated. A first shell closure with 5 and (3 + 2) attached He atoms, respectively, is observed for both species. Applying IR radiation in the 3 μm region, helium attachment to CH5+ is hindered by exciting CH-stretches of CH5+ prior to attachment. The resulting spectroscopic signal shows that the kinetic temperature of the stored CH5+ ensemble is below 12 K.

Notes

Acknowledgments

This work has been financially supported by the Deutsche Forschungsgemeinschaft (DFG) via SCHL 341/6-1. S.B. and St.S. acknowledge support from DFG SPP 1573 grant BR 4287/1-1. The authors gratefully acknowledge the work done over the last years by the electrical and mechanical workshops of the I. Physikalsiche Institut, as well as our engineers Frank Bielau, Peter Stölzgen and Henning Adams. The authors thank Sabrina Gärtner, Sven Fanghänel, Alexander Stoffels and Alexey Potapov for setting up components of the instrument, as well as Stefan Wulff for Al-coating the scintillators. Most of all we want to thank Dieter Gerlich for sharing his ideas with us.

References

  1. 1.
    W. Paul, M. Raether, Das elektrische Massenfilter. Z. Phys. 140, 262–273 (1955)ADSCrossRefGoogle Scholar
  2. 2.
    W. Paul, O. Osberghaus, E. Fischer, Ein Ionenkäfig. Forsch. Ber. d. Wirtsch. minist. Nordrh. Westfal. Nr. 415, 1–42 (1955)Google Scholar
  3. 3.
    E. Fischer, Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld. Z. Phys. 156, 1–26 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    W. Paul, Electromagnetic Traps for charged and neutral particles, 1989. Nobel Lecture, available on http://www.nobel.se.
  5. 5.
    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22, 1137–1140 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney, Atomic-ion Coulomb crystal in an ion trap. Phys. Rev. Lett. 59, 2935–2938 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319(5871), 1808–1812 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Harju, M. Juvela, S. Schlemmer, L.K. Haikala, K. Lehtinen, K. Mattila, Detection of 6 K gas in Ophiuchus D. Astron. Astrophys. 482, 535–539 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    O. Asvany, S. Schlemmer, Numerical simulations of kinetic ion temperature in a cryogenic linear multipole trap. Int. J. Mass Spectrom. 279, 147–155 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Gerlich, Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. In: C.Y. Ng, M. Baer (eds) Adv. Chem. Phys.: State-Selected and State-to-State Ion-Molecule Reaction Dynamics, vol. LXXXII, (Wiley, New York, 1992) pp. 1–176.CrossRefGoogle Scholar
  11. 11.
    D. Gerlich, Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T 59, 256–263 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    O. Asvany, F. Bielau, D. Moratschke, J. Krause, S. Schlemmer, New design of a cryogenic linear rf multipole trap. Rev. Sci. Instrum. 81, 076102 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D. Gerlich, S. Horning, Experimental investigations of radiative association processes as related to interstellar chemistry. Chem. Rev. 92, 1509–1539 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    D. Gerlich, Recent progress in experimental studies of ion-molecule reactions relevant to interstellar chemistry. In: I. Nenner (eds) Molecules and Grains in Space, (AIP Press, New York, 1994) pp. 489–500.Google Scholar
  15. 15.
    D. Gerlich, S. Schlemmer, Deuterium fractionation in gas-phase reactions measured in the laboratory. Planet. Space Sci. 50, 1287–1297 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    W. Paul, B. Lücke, S. Schlemmer, D. Gerlich, On the dynamics of the reaction of positive hydrogen cluster ions (H5+ to H23+) with para and normal hydrogen at 10K. J. Mass Spectrom. Ion Process. 150, 373–387 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    E.T. White, J. Tang, T. Oka, CH5+: the infrared spectrum observed. Science 284, 135–137 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    O. Asvany, P.P. Kumar, B. Redlich, I. Hegemann, S. Schlemmer, D. Marx, Understanding the infrared spectrum of bare CH5+. Science 309, 1219–1222 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    O.V. Boyarkin, S.R. Mercier, A. Kamariotis, T.R. Rizzo, Electronic spectroscopy of cold, protonated tryptophan and tyrosine. J. Am. Chem. Soc. 128, 2816–2817 (2006)CrossRefGoogle Scholar
  20. 20.
    X. Chen, M. Tirado, J.D. Steill, J. Oomens, N.C. Polfer, Cyclic peptide as reference system for b ion structural analysis in the gas phase. J. Mass Spectrom. 46(10), 1011–1015 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Grzetic, J. Oomens, Spectroscopic evidence for an oxazolone structure in anionic b-type peptide fragments. J. Am. Soc. Mass Spectrom. 23(2), 290–300 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Oepts, van der A.F.G. Meer, van P.W. Amersfoort, The free-electron-laser user facility felix. Infrared Phys. Technol. 36, 297–308 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    D. Gerlich, The study of cold collisions using ion guides and traps. In: I.W.M. Smith (eds) Low Temperatures and Cold Molecules, chap. 3 (Imperial College Press Distributer World Scientific Publishing Co. Pte. Ltd., Singapore, 2008) pp. 121–174.CrossRefGoogle Scholar
  24. 24.
    R.M. Jones, D. Gerlich, S.L. Anderson, Simple radio-frequency power source for ion guides and ion traps. Rev. Sci. Instrum. 68(9), 3357–3362 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    R.M. Jones, S. L. Anderson, Simplified radio-frequency generator for driving ion guides, traps, and other capacitive loads. Rev. Sci. Instrum. 71(11), 4335–4337 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    N.R. Daly, Scintillation type mass spectrometer ion detector. Rev. Sci. Instrum. 31, 264–267 (1960)ADSCrossRefGoogle Scholar
  27. 27.
    S.D. Ivanov, O. Asvany, A. Witt, E. Hugo, G. Mathias, B. Redlich, D. Marx, S. Schlemmer, Quantum-induced symmetry breaking explains infrared spectra of CH5+ isotopologues. Nat. Chem. 2, 298–302 (2010)CrossRefGoogle Scholar
  28. 28.
    O. Asvany, J. Krieg, S. Schlemmer, Frequency comb assisted mid-infrared spectroscopy of cold molecular ions. Rev. Sci. Instrum. 83, 093110 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M. Okumura, L.I. Yeh, J.D. Myers, Y.T. Lee, Infrared specta of the solvated hydronium ion: vibrational predissociation spectroscopy of mass-selected H3O+(H2O)n(H2)m. J. Phys. Chem. 94, 3416–3427 (1990)CrossRefGoogle Scholar
  30. 30.
    E.J. Bieske, O. Dopfer, High-resolution spectroscopy of cluster ions. Chem. Rev. 100, 3963–3998 (2000)CrossRefGoogle Scholar
  31. 31.
    J.M. Headrick, E.G. Diken, R.S. Walters, N.I. Hammer, R.A. Christie, J. Cui, E.M. Myshakin, M.A. Duncan, M.A. Johnson, K.D. Jordan. Spectral signatures of hydrated proton vibrations in water clusters. Science 308(5729), 1765–1769 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Ricks, G.E. Douberly, P.V.R. Schleyer, M.A. Duncan, Infrared spectroscopy of gas phase C3H3+ ions: the cyclopropenyl and propargyl cations. J. Chem. Phys. 132(5), 051101 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M.Z. Kamrath, R.A. Relph, T.L. Guasco, C.M. Leavitt, M.A. Johnson, Vibrational predissociation spectroscopy of the H2-tagged mono- and dicarboxylate anions of dodecanedioic acid. Int. J. Mass Spectrom. 300(23), 91–98 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    B.D. Wan, Z.F. Liu, A.G. Suits, J.S. Tse, Y.T. Lee, Dynamics of carbonium ions solvated by molecular hydrogen: CH5+(H2)n (n = 1,2,3). Science 269, 57–59 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    D.W. Boo, Y.T. Lee, Infrared spectroscopy of the molecular hydrogen solvated carbonium ions, CH5+(H2)n (n = 1–6). J. Chem. Phys. 103, 520–530 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    J. Jašík, J. Žabka, J. Roithová, D. Gerlich, Infrared spectroscopy of trapped molecular dications below 4 K. Int. J. Mass Spectrom. (2013). doi:10.1016/j.ijms.2013.06.007
  37. 37.
    A. Patzer, M. Schütz, T. Möller, O. Dopfer, Infrared spectrum and structure of the adamantene cation: direct evidence for Jahn-Teller distortion. Angew. Chem. Int. Ed. 51, 4925–4929 (2012)CrossRefGoogle Scholar
  38. 38.
    E.J. Bieske, A. Soliva, M.A. Welker, J.P. Maier, The B \(\leftarrow\) X electronic spectrum of N2+-He. J. Chem. Phys. 93(6), 4477–4478 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    M. Brümmer, C. Kaposta, G. Santambrogio, Knut R. Asmis, Formation and photodepletion of cluster ion–messenger atom complexes in a cold ion trap: infrared spectroscopy of VO+,VO2+, and VO3+. J. Chem. Phys. 119(24), 12700–12703 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    D. Gerlich, T. Rox, Association reactions with state selected ions at meV collision energies: CO+ (v=0,j) + 2CO \(\rightarrow \hbox{(CO)}_2^+ + \hbox{CO}\). Z. Phys D Atoms Mol. Clust. 13(3), 259–268 (1989)CrossRefGoogle Scholar
  41. 41.
    S. Chakrabarty, M. Holz, A. Banerjee, D. Gerlich, J.P. Maier, A novel method to measure electronic spectra of cold molecular ions. J. Phys. Chem. Lett. (2013) (submitted)Google Scholar
  42. 42.
    S. Schlemmer, O. Asvany, S. Brünken, Low temperature trapping: from reactions to spectroscopy. In International Symposium on Molecular Spectroscopy 68th Meeting, Columbus, Ohio, (2013)Google Scholar
  43. 43.
    O. Asvany, E. Hugo, S. Schlemmer, CF16 differentially pumped window for ultrahigh vacuum applications. J. Vac. Sci. Technol. A 25, 628 (2007)CrossRefGoogle Scholar
  44. 44.
    J. Glosík, P. Hlavenka, R. Plašil, F. Windisch, D. Gerlich, A. Wolf, H. Kreckel, Action spectroscopy of H3+ and D2H+ using overtone excitation. Philos. Trans. R. Soc. A, 364, 2931–2942 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    J. Mikosch, U. Frühling, S. Trippel, D. Schwalm, M. Weidemüller, R. Wester, Evaporation of buffer-gas-thermalized anions out of a multipole rf ion trap. Phys. Rev. Lett. 98, 223001 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    O. Asvany, E. Hugo, F. Müller, F. Kühnemann, S. Schiller, J. Tennyson, S. Schlemmer, Overtone spectroscopy of H2D+ and D2H+ using laser induced reactions. J. Chem. Phys. 127, 154317 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    R. Otto, A. von Zastrow, T. Best, R. Wester, Internal state thermometry of cold trapped molecular anions. PhysChemChemPhys 15, 612 (2013)Google Scholar
  48. 48.
    S. Schlemmer, T. Kuhn, E. Lescop, D. Gerlich, Laser excited N2+ in a 22-pole ion trap: experimental studies of rotational relaxation processes. Int. J. Mass Spectrom. 185, 589–602 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    S. Schlemmer, E. Lescop, J.V. Richthofen, D. Gerlich, Laser induced reactions in a 22-pole trap: \(\hbox{C}_2\hbox{H}_2^+ + h\nu_3 + \hbox{H}_2 \rightarrow \hbox{C}_2\hbox{H}_3^+\) + H. J. Chem. Phys. 117, 2068–2075 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    O. Asvany, T. Giesen, B. Redlich, S. Schlemmer, Experimental determination of the ν5 cis-bending vibrational frequency in ground state \((\hbox{X}^2\Uppi_u) \hbox{C}_2\hbox{H}_2^+\) using laser induced reactions. Phys. Rev. Lett. 94, 073001 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    O. Asvany, O. Ricken, H.S.P. Müller, M.C. Wiedner, T. Giesen, S. Schlemmer, High-resolution rotational spectroscopy in a cold ion trap: H2D+ and D2H+. Phys. Rev. Lett. 100, 233004 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    J. Shen, A. Borodin, M. Hansen, S. Schiller, Observation of a rotational transition of trapped and sympathetically cooled molecular ions. Phys. Rev. A 85, 032519 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    S. Gärtner, J. Krieg, A. Klemann, O. Asvany, S. Brünken, S. Schlemmer, High-resolution spectroscopy of CH2D+ in a cold 22-pole ion trap. J. Phys. Chem. A 117, 9975–9984 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oskar Asvany
    • 1
  • Sandra Brünken
    • 1
  • Lars Kluge
    • 1
  • Stephan Schlemmer
    • 1
  1. 1.I. Physikalisches InstitutUniversität zu KölnCologneGermany

Personalised recommendations